
CCP TSI 2018 - Informatique
Corrigé proposé par Thomas HAIRIE (Lycée Henri Parriat - Montceau-les-Mines)

8]

0.0072, 0.273, 1.13, 1]

C(p) K
p
 + K

p
 T

i
 p + K

p
 T

d
 T

i
 p2

T
i
 . p=

Donc N
C
(p) = K

p
 + K

p
 T

i
 p + K

p
 T

d
 T

i
 p2 et D

C
(p) = T

i
 . p

num = [Kp*Td*Ti, Kp*Ti, Kp]

den = [Ti, 0]

[r, s, 0, 0]

[a*r, a*s + b*r, a*0 + b*s]
(on suppose que c'est le contenu de la liste à la fin de l'itération k = 2 et i=1 qui est demandé)

[a*r, a*s + b*r, a*0 + b*s + c*r, a*0 + b*0 + c*s + 0*r] = [a*r, a*s + b*r, b*s + c*r, c*s]

elle renvoie la liste des coefficients (rangés par puissance croissante) du

produit de deux polynômes représentés par les listes P et Q de leurs coefficients (rangés par puissance
croissante)

(le sujet indique avant "la" boucle for, mais il y en a plusieurs...)

avant la boucle "for k …"

liste_r = zeros(len(liste))

for k in range(len(liste)):

liste_r[k] = liste[len(liste)-k-1]

prod_num = inverse(multi_listes(inverse(num1), inverse(num2)))

prod_den = inverse(multi_listes(inverse(den1), inverse(den2)))

prod_num, prod_den

deg_max = max(len(P)-1, len(Q)-1)
liste_P, liste_Q = inverse(P), inverse(Q)

liste_somme = zeros(deg_max+1)
for k in range(deg_max+1) :

liste_somme[k] = liste_P1[k] + liste_Q1[k]

liste_P1, liste_Q1 = zeros(deg_max+1), zeros(deg_max+1)
for k in range(len(P)) :

liste_P1[k] = liste_P[k]
for k in range(len(Q)) :

liste_Q1[k] = liste_Q[k]

somme = inverse(liste_somme)

les coefficients sont rangés par puissance croissante dans P et Q

racines = roots(P)

parties_réelles = real(roots(P))

for k in range(len(parties_réelles)):

if parties_réelles[k] >= 0 :

return False

True

La fonction examine chaque instant en partant du dernier : dès que la réponse sort de l'intervalle

 (s_fin*0,95 ; s_fin*1,05), l'instant correspondant est mémorisé (T5) et la boucle est interrompue (break).

La valeur s[T5] à l'instant T5 se trouve encore dans l'intervalle de tolérance à 5%, donc T5 est supérieur

au temps de réponse à 5%. La valeur approchée T5 majore le temps de réponse à 5%.

s_fin = s[-1]

j = len(t)-1

while s[j-1] > 0.95*s_fin and s[j-1] < 1.05*s_fin :

j = j-1

T5 = t[j] #valeur approchée majorant le temps de réponse

D1 = (max(s) - s[-1]) / s[-1]

IAE = 0

for k in range(len(s)-1) :

epsilon = s[k] - e

IAE = IAE + abs(epsilon) *(t[k+1] - t[k])

Le calcul est effectué à l'aide de la méthode des rectangles (à droite). L'intégrale de |ε(t)| sur chaque

e = 1

 intervalle (t[k] ; t[k+1]) est approchée par celle du rectangle de hauteur |ε(t[k])|.

Pour les valeurs (T50, D10,IAE0), ponderation_cout(T5,D1,IAE) renvoie 1. La valeur retournée pour

un triplet (T5, D1, IAE) quelconque doit donc être dans l'intervalle [0;1[pour que la configuration soit

considérée comme meilleure que la réponse de référence.

Ti = (100 - 0.01)*Ii/(2**16 - 1) + 0.01

Td = (50 - 0)*Id/(2**16 - 1) + 0

Kp = (100 - 0.01)*Ip/(2**16 - 1) + 0.01

On dénombre 216 valeurs possibles pour chaque paramètre (Ip, Ii, Id. Comme les paramètres sont

soit 256*(1024)4 ~ 3.1014 combinaisons.

choisis de manière indépendante, il y a 216 * 216 * 216 = 248 combinaisons possibles pour le correcteur,

stabilite(den_BO)

if stable == True :

T5, D1, IAE = Temps_reponse(s,t), depassement(s,t), critere_IAE(s,t)

t,s = rep_Temp(Kp, Ti, Td)

cout = ponderation_cout(T5, D1, IAE)

else :

cout = 100

Pour tester chaque combinaison, il faudrait 3.1014 * 10,3.10-3 ~ 3.1012 s ~ 109 h. Cette durée est beaucoup

trop importante pour envisager cette stratégie.

16

Le résultat renvoyé est une chaine de caractères (str).

range(0,100) :
[genererGene(n), genererGene(n), genererGene(n)]

Le nombre décimal associé vaut 20 + 23 + 26 = 1 + 8 + 64 = 73

p in range(0,len(b2)):

b10 = b2[p]*(2**p)

Il s'agit d'un tri par insertion (naïf, il pourrait être amélioré par une recherche dichotomique).

Dans le meilleur des cas (liste initiale rangée dans l'ordre croissant), n comparaisons (test "if") et

n affectations (i in range…) sont effectuées, la complexité est d'ordre n (boucle while jamais exécutée).

Dans le pire des cas (liste initiale rangée dans l'ordre décroissant), la boucle while est exécutée

n + (n-1) + (n-2) + … + 1 = n(n+1)/2 fois, avec une complexité d'ordre 1 (comparaison, pop, insert)

pour chaque itération, soit une complexité d'ordre n2. Les opérations hors de la boucle while présentent

une complexité d'ordre n, la complexité de la fonction est donc d'ordre n2 dans le pire des cas.

E1.append(P1[k][0:4]+P2[k][4:12]+P1[k][12:16])
for k in range(0,3):

E2.append(P2[k][0:4]+P1[k][4:12]+P2[k][12:16])

E1, E2

La commande renvoie ['1111111111111111', '0000000000001000', '1111111100000000']

Le 13ème bit du deuxième gène a été modifié.

range(30) :

L_new.append(mutation(E1,int(random()*3),int(random()*16)))
E1, E2= croisement(c1,c2)

c1,c2 = int(random()*19)+1, int(random()*19)+1
while c2 == c1 : #il ne faut pas croiser un candidat avec lui-même !

c2 = int(random()*19)+1

L_new.append(mutation(E2,int(random()*3),int(random()*16)))

(L) :

for j in range(i+1,len(L)):
for i in range(len(L)):

if L[i]==L[j]:
L[j]=[genererGene(n), genererGene(n), genererGene(n)]

Q25. Cette requête renvoie la valeur minimale de l'attribut (colonne) score dans la table Historique.

Elle permet d'obtenir le score du meilleur candidat : 0,618248479198 (Id = 65).

Q26. SELECT disparition - apparition FROM Historique

WHERE score = (SELECT min(score) FROM Historique)

Le résultat est 28 (49-21) : cela signifie que les 28 dernières itération n'ont pas apporté d'amélioration

dans l'exemple étudié. Il paraît raisonnable de réduire le nombre d'itérations (à 30 par exemple).

Q27. La requête renvoie les identifiants des meilleurs candidats de la 15e itération (ceux qui sont

apparus avant et ont disparu après). On obtient les valeurs suivantes : 46, 50.

Les données fournies semblent incohérentes : de nombreuses lignes présentent la même date

d'apparition et de disparition, or la table n'est censée contenir que les candidats qui ont été parmi

les 20 meilleurs : ils n'ont donc pas pu apparaître et disparaître lors de la même itération...

Q28. SELECT AVG(gene_Kp), AVG(gene_Ti), AVG(gene_Td) FROM Historique

WHERE 20 > apparition AND 20 < disparition

Q29. Le résultat fourni par l'algorithme génétique est meilleur à tous points de vue :

- meilleur temps de réponse à 5%
- taux de dépassement inférieur

- IAE plus faible

Sans informations supplémentaires (temps d'exécution…), l'algorithme génétique ne présente que

des avantages, il est opportun de l'utiliser.

