=

=

90 PREUVE D’UN ALGORITHME

Preuve d’un algorithme

“ Compétences exigées

/ —Osjectifs —

Les capacités évaluées dans cette partie de la formation sont :
e justifier qu’une itération (ou boucle) produit I’effet attendu au moyen d’un invariant,

e démontrer qu’une boucle se termine effectivement.

m Position du probleme

Les itérations permettent d’écrire des programmes qui exécutent plusieurs fois les mémes instructions.
Ce sont les seules instructions qui nous permettent d’écrire un programme dont le temps d’exécution est
arbitrairement long, ou mé€me infini. Par exemple, I’algorithme suivant ne s’arréte jamais :

T TANT_QUE 1 = 1 FAIRE
DEBUT_TANT_QUE

1
2
33
4: | FIN_TANT_QUE

Algorithme 28 : boucle infinie 1

Un autre exemple :

1: INITIALISATION

2: n+0

3: TANT_QUE n > 0 FAIRE
4: DEBUT_TANT_QUE

5 n+<n-+1

6

| FIN_TANT_QUE

Algorithme 29 : boucle infinie 2
Avec les boucles, il y a deux questions qui surgissent :

e La terminaison : la boucle se termine-t-elle ? Sous quelles conditions ?

e La validité : que calcule la boucle en question ?

Pour les boucles POUR. . .DE. . . A, le probleme de terminaison ne se pose pas. Il n’en est pas de méme pour
les boucles TANT QUE.

Saint Joseph - LaSalle CPGE TSI



8.3 Terminaison 91

m Terminaison

Méthode

Pour prouver qu’un algorithme faisant intervenir une boucle conditionnelle se termine, on cherche a iden-
tifier une expression a valeurs entieres positives strictement décroissante et minorée : mathématiquement,
cela se traduit par :

dneRtgqvVn € Nym < u,

Cette expression est appelée variant de boucle.

On peut par exemple considérer I’algorithme suivant qui effectue la division euclidienne d’un entier a par
un autre entier b :

1: VARIABLES
2: a, b : entiers
3: SORTIES
4: AFFICHER le quotient ¢ et le reste r
5: DEBUT_ALGORITHME
6: INITIALISATION
T: g+ 0
8: T a
9: TANT_QUE r > b FAIRE
10: DEBUT_TANT_QUE
11: r+r—=>b
12: g+ qg+1
13: FIN_TANT_QUE
14: AFFICHER quotient g et reste r
15: FIN_ALGORITHME

Algorithme 30 : division euclidienne

Cet algorithme permet de calculer le quotient g et le reste r de la division de a par b.

/_, —Principe —

A chaque itération de la boucle, r est minoré par b et décroit strictement puisque b est strictement positif.
Ceci assure la terminaison de la boucle.

En sortie de boucle, on sait que » < b mais comme 7 est positif, 7 est en réalité compris dans I’intervalle
[Oﬂ b— 1]

m Les invariants de boucle

Il est indispensable qu’un algorithme se termine mais on souhaite également qu’il effectue la tiche voulue !

C’est ce qu’on vérifie au moyen d’un invariant de boucle.

4 —Remaraue —

Lorsqu’il est indiqué dans la structure de 1’algorithme, I’invariant de boucle est en principe noté entre
accolades, en tant que commentaire.

Saint Joseph - LaSalle CPGE TSI

La
Lo

7;*%



92 PREUVE D’UN ALGORITHME

m Définition

@ — Invariant de Boucle —

On appelle invariant de boucle une proposition vérifiant les conditions suivantes :

e La proposition est vraie avant 1’entrée dans la boucle.

e Si cette proposition est vraie au début d’une itération, elle reste vraie a la fin de I’itération, donc au
début de I’itération suivante.

Dans ce cas, cette proposition sera vraie a la sortie de la boucle.

Il s’agit en fait d’un raisonnement par récurrence.

Reprenons I’exemple de la division euclidienne de a par b.

e Initiation : avant la boucle,g =0etr =a.Onadonca =b x g+ 7.

e Hérédité : supposons que a = b x ¢ + r au début d’une itération. Notons ¢’ et v’ les valeurs de g et r
a la fin de ’itération.
Onaq =q+1letr'=r—bdesortequebx ¢ +r' =bx (¢q+1)+(r—b)=bxqg+r=a.En
fin d’itération, on a alors a = b x ¢ + r avec r € [0,b — 1] (condition de sortie), ce qui assure que ¢
et r sont bien le quotient et le reste de la division euclidienne de a par b.

{a = b x q + r} constitue donc un invariant de boucle.

On peut le montrer en remplissant le tableau suivant, en prenant par exemple a = 17etb =4:

Itération q r bxq+r

Avant la boucle

premiere itération

deuxieéme itération

troisieéme itération

quatrieme itération

m Implémentation en Python

= Activité 8.42

1. Proposez une fonction permettant de calculer le résultat de la division euclidienne de a par b.

2. Introduisez dans la fonction un test permettant de savoir si I’invariant de boucle est vérifié a chaque
itération.

Saint Joseph - LaSalle CPGE TSI



8.5 Applications 93

Le résultat :

Division euclidienne de 17 par 4
Invariant vérifié

Invariant vérifieé

Invariant vérifié

Invariant vérifieé

4, 1)

Applications

Algorithme d’Euclide

Algorithme

Soit I’algorithme suivant qui calcule le plus grand commun diviseur (pged) n de deux entiers a et b :

1: VARIABLES
2: a, b : entiers
3: n, p : entiers
4: SORTIES
5: AFFICHER le pgcd m de a et b
6: DEBUT_ALGORITHME
7 INITIALISATION
8: n<a
9: p+b
10: TANT_QUE p # O FAIRE
11: DEBUT_TANT_QUE
12: n,p < p,n%p
13: # n%p est le reste de n/p
14: FIN_TANT_QUE
15: AFFICHER le pgcd n

16: FIN_ALGORITHME

Algorithme 31 : algorithme d’Euclide

Terminaison

= Activité 8.43

Vérifiez la terminaison de cet algorithme.

Saint Joseph - LaSalle CPGE TSI



=

>

je

=

>

je

94 PREUVE D’UN ALGORITHME

m Invariant de boucle

= Activité 8. 44

Vérifiez que {pged(a, b) = pged(n, p)} constitue un invariant de boucle.

m Implémentation en Python

= Activité 8.45

1. Proposez une fonction permettant de calculer le pged de a et b de facon itérative.
2. Proposez une fonction permettant de calculer le pged de a et b de fagon récursive.

3. Introduisez dans la deuxieme fonction un test permettant de savoir si I’invariant de boucle est véri-
fié a chaque itération. Vous pourrez utiliser la premiere fonction pour vérifier cet invariant dans la
deuxiéme fonction.

Saint Joseph - LaSalle CPGE TSI



8.5 Applications 95
Le résultat :
pgcd de 56 et 42
14
Invariant vérifié
Invariant vérifié
14
= Activité 8.46
Soit n un entier strictement positif et a un réel. Considérons 1’algorithme suivant qui calcule s = o™ :
1: VARIABLES
2: a, r, s : flottants
3: n, N : entiers
4: SORTIES
5: AFFICHER a™
6: DEBUT_ALGORITHME
T INITIALISATION
8: s+ a
OF N <+n
10: r<1
11: TANT_QUE N > 0 FAIRE
12: DEBUT_TANT_QUE
135 SI N%2 =0 # (N pair) ALORS
14: DEBUT_SI
15: S SX s
16: N + N/2
17: FIN_SI
18: SINON
19: DEBUT_SINON
20: T4 T XS
21: N+ N-1
22: FIN_SINON
23: FIN_TANT_QUE
24: AFFICHER s
25: FIN_ALGORITHME
Algorithme 32 : puissance
Montrez que I’algorithme se termine et vérifiez que I’invariant de boucle est {s” x r = a™}.
= Activité 8.47
Saint Joseph - LaSalle CPGE TSI



96 PREUVE D’UN ALGORITHME

Considérons I’algorithme suivant qui calcule la factorielle res d’un entier n :

1: VARIABLES
2: n, i, res : entiers
3: SORTIES
4: AFFICHER res
5: DEBUT_ALGORITHME
6: INITIALISATION
T: i+ 0
8: res < 1
!Ei 9: TANT_QUE ¢ < n FAIRE
F 10: DEBUT_TANT_QUE
L\' 11: i—i+1
12: res <— res X i
13: FIN_TANT_QUE
14: AFFICHER res

15: FIN_ALGORITHME

Algorithme 33 : factorielle

Montrez que 1’algorithme se termine et vérifiez que {res = ¢!} est un invariant de boucle.

Saint Joseph - LaSalle CPGE TSI



