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Calculs d’inductance

EM071. Inductance propre d’une bobine torique (*)
Une bobine torique, centrée autour d’un axe Oz, est constituée de N spires join-
tives enroulées sur un tore de section rectangulaire, de rayon intérieur a, de rayon
extérieur b et de hauteur h. Les spires sont parcourues par un courant d’intensité
I.
Dans l’hypothèse de spires jointives (N � 1), on rappelle que le champ magné-

tique vaut ~Bint =
µ0NI

2πr
~uθ au sein de la bobine et qu’il est nul en dehors ~Bext = ~0.

1. En considérant le flux propre, déterminer l’inductance propre de la bobine
torique.

2. En considérant l’énergie magnétique, déterminer l’inductance propre de la
bobine torique.

Réponse : L =
µ0N

2h

2π
ln

(
b

a

)
EM057. Inductance mutuelle (*)

On considère le dispositif ci-dessous, comportant un fil infini et une spire rectan-
gulaire.
Déterminer le coefficient d’inductance mutuelle entre le fil infini et la spire rec-
tangulaire.
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Réponse : M =
µ0h

2π
ln
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)

Couplage électromécanique
EM106. Couplage d’oscillateurs par mutuelle inductance (***)

On s’intéresse aux deux circuits LC ci-dessous. On note M le coefficient de mu-
tuelle inductance. On étudiera le régime libre.
À t = 0, on ferme les deux interrupteurs.
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1. Trouver les équations différentielles satisfaites par q1(t) et q2(t). On posera
ω2

0 = 1/LC et α = M/L.

2. En considérant les variables Q = q1+q2 et P = q1−q2, déterminer les formes
générales solutions pour P et Q, sans chercher à ce stade à déterminer les
constantes d’intégration.

3. Quelle est en général l’allure du spectre de q1(t) ?

4. Initialement, les deux circuits sont ouverts. Quelles conditions initiales sur
les charges des condensateurs doit-on imposer pour que le spectre de q1(t)
ne contienne qu’une seule fréquence ?

5. On suppose maintenant que q1(0) = q et q2(0) = 0 et on se place dans la
situation où α� 1. Montrer que :

q1(t) = q cos (ω0t) cos (αω0t/2)
Tracer l’allure de la courbe pour α = 1/10.

6. Dans le cas général, réaliser un bilan de puissance et le commenter.

Réponses : 1 :
d2q1
dt2

+α
d2q2
dt2

+ω2
0q1 = 0 et

d2q2
dt2

+α
d2q1
dt2

+ω2
0q2 = 0 ; 2 : Q(t) = A cos (ω1t+ ϕ)

et P (t) = B cos (ω2t+ β) avec ω2
1 =

ω2
0

1 + α
et ω2

2 =
ω2

0

1− α ; 4 : q1(0+) = q2(0+) = q ou

q1(0+) = −q2(0+) = q ; 6 :
d

dt

(
q2
1

2C
+

1

2
Li21 +

q2
2

2C
+

1

2
Li22 +Mi1i2

)
= 0

EM111. Mouvement de deux barres couplées par induction (**)

Les deux barres sont identiques. Elles sont posées sur deux rails conducteurs pa-
rallèles distants de a, horizontaux, de résistance électrique négligeable. Les barres
peuvent glisser sans frotter en restant orthogonales aux rails. Chaque barre a une
masse m et une résistance électrique R/2.
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La barre de droite est lancée avec une vitesse initiale ~v0, celle de gauche étant
initialement immobile.
Un champ magnétique uniforme, stationnaire et vertical ~B règne entre les rails.

1. Déterminer le mouvement des barres grâce à un raisonnement qualitatif.

2. Établir l’expression des vitesses des barres en fonction du temps. Commenter
le cas t→ +∞.

3. Faire une étude énergétique.

Réponses : 2 : ∀t ≥ 0, v2(t) =
v0

2

(
1 + e−t/τ

)
; ∀t ≥ 0, v1(t) =

v0

2

(
1− e−t/τ

)
EM130. Millefeuille magnétique, Oral Centrale PC 2016 (**)

Un cadre conducteur carré et vertical ABCD de coté a, de masse m et de
résistance R tombe dans le champ de pesanteur. Il rencontre une succession de
quatre zones horizontales d’épaisseur a dans lesquelles règne un champ magnétique
~B horizontal, uniforme et constant. Chaque zone est séparée de ses voisines par des
zones sans champ magnétique, également d’épaisseur a. L’ensemble forme ainsi
une sorte de « millefeuille magnétique » (seules les deux premières couches sont
représentées sur la figure).
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1. De quelle hauteur h faut-il lâcher le cadre ABCD, sans vitesse initiale, pour
qu’il traverse le mille-feuille à vitesse constante ?

2. Tracer alors l’allure de la vitesse du cadre et du courant électrique le traver-
sant en fonction du temps.

Réponses : 1 : h =
m2gR2

2B4a4

EM075. Alternateur rudimentaire (**)

Un alternateur transforme une énergie mécanique (ici la rotation de la bobine) en
une énergie électrique (générée par la force électromotrice).
Une bobine plate comportant N = 200 spires, d’aire S = 20 cm2, tourne avec
une vitesse angulaire constante ω = 10 rad · s−1 entre les pôles d’un aimant qui
produit un champ uniforme B = 0, 2 T normal à l’axe de rotation.
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La bobine qui constitue un circuit fermé possède une résistance totale R = 1 Ω.
Le champ magnétique qu’elle crée est négligeable devant le champ magnétique de
l’aimant.

1. Exprimer la f.e.m induite par le mouvement de la bobine.

2. Déterminer le moment Γop par rapport à l’axe que l’opérateur doit exercer
pour entretenir la rotation :

(a) Première méthode : en déterminant la puissance du couple des forces de
Laplace grâce à la relation PLap + Pfem = 0.

(b) Seconde méthode : en utilisant le fait qu’un champ magnétique exerce
sur un moment magnétique

−→
M un couple

−→
Γ Lap =

−→
M∧ ~B.

Réponses : 1 : e = BSNω sin (ωt) ; 2 : ~Γop =
B2S2N2ω sin2 (ωt)

R
~uz

Pour aller plus loin
EM131. Pince ampèremétrique (Oral Centrale TSI, **)

Une bobine torique de section carrée de côté 2a, de rayon moyen R, comportant
N spires jointives est fermée sur un ampèremètre de résistance négligeable.
La bobine torique a une résistance équivalente notée Rb.
La bobine enserre un fil conducteur que l’on supposera rectiligne et infini et dont
l’axe coïncide avec celui de la bobine torique ; le conducteur est parcouru par un
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courant I(t) = I0 cos (ωt). Ce courant variable induit un courant i(t) dans la bo-
bine torique. Vu la symétrie du problème, on travaille en coordonnées cylindriques
d’axe Oz.

1. Exprimer, en exploitant soigneusement les symétries, le champ magnétique
~Bbobine(r, θ, z, t) créé par la bobine en tout point intérieur, en fonction, no-
tamment, de N , i(t), et r.

2. Déterminer, de même, le champ magnétique ~Bfil(r, θ, z, t) créé par le fil en
tout point, en fonction, notamment de I(t).

3. Montrer que l’inductance propre de la bobine torique, notée L et l’inductance
mutuelle M entre les deux circuits sont données par :

L =
µ0N

2a

π
ln

(
R+ a

R− a

)
et M =

µ0Na

π
ln

(
R+ a

R− a

)
4. Exprimer l’intensité complexe i(t) du courant dans la bobine en régime

sinusoïdal forcé (régime imposé par le fil central, toujours parcouru par
I(t) = I0 cos (ωt)).

5. Que devient le rapport
∣∣∣∣ iI
∣∣∣∣ à haute fréquence ? Préciser le sens de l’expression

« haute fréquence ».
On donne N = 10000 ; R = 6, 0 cm ; a = 1, 0 cm ; f = 50 Hz ; Rb = 0, 20 Ω.

6. Pourquoi ce dispositif, appelée pince ampèremétrique, est très utilisé pour
la mesure des courants forts.

Réponses : 1 : ~Bbobine(M, t) =
µ0Ni

2πr
~uθ ; 2 : ~Bfil(r, t) =

µ0I(t)

2πr
~uθ ; 4 :

i

I
=
−jωM
Rb + jLω

;

5 :
∣∣∣∣ iI

∣∣∣∣ =
1

N

EM083. Chauffage par induction (Extrait CCP TSI 2013, **)

Un disque conducteur de conductivité σ, d’axe Oz vertical, de rayon b et d’épais-
seur e est plongé dans un champ magnétique ~B. Ce champ magnétique a les
caractéristiques suivantes :

— il est localisé dans un cylindre d’axe vertical Oz de rayon a ;
— il est uniforme dans le cylindre précédent et nul à l’extérieur de ce cylindre ;
— il est dirigé verticalement suivant le vecteur ~uz ;
— il varie au cours du temps selon la forme ~B(t) = Bm cos (ωt)~uz, où Bm

représente son amplitude et ω sa pulsation.
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Nous admettrons les hypothèses simplificatrices suivantes :
— le disque conducteur étant disposé dans un champ magnétique variable, il

sera le siège d’un courant volumique induit ~j ;
— compte-tenu de la symétrie du système, le courant volumique induit est

orthoradial et de la forme ~j = j(r, t)~eθ ;
— dans les conditions du problème, le champ magnétique induit créé par le

courant induit est négligeable devant le champ magnétique extérieur appli-
qué.

1. Rappeler la relation entre le vecteur densité volumique de courant ~j au
champ électrique ~E dans un conducteur de conductivité σ.

2. On considère un contour circulaire Γ de rayon r et d’axe Oz. Déterminer la
circulation C(r, t) du champ électrique résultant sur ce contour. On expri-
mera C(r, t) en fonction de r, j(r, t) et σ.

3. Déterminer l’expression du flux Φ du champ magnétique à travers la surface
définie par le contour Γ.
On distinguera très clairement les deux cas où r < a et a < r < b.

4. En utilisant l’équation de Maxwell-Faraday, montrer que :∮
Γ

~E.d~l = −dΦ

dt
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5. En déduire l’expression du courant volumique induit j(r, t) en fonction de
σ, ω, r, a, Bm, t.
On distinguera très clairement les deux cas où r < a et a < r < b.

6. Rappeler l’expression de la puissance volumique dissipée par effet Joule.

7. En considérant que le disque conducteur est constitué par des couronnes
de rayon r, de largeur dr et d’épaisseur e, déterminer l’expression de la
puissance totale Pjoule dissipée par effet Joule dans l’ensemble du disque
conducteur puis sa valeur moyenne 〈Pjoule〉.
On montrera que 〈Pjoule〉 peut se mettre sous la forme 〈Pjoule〉 = Aω2B2

m

où A est un coefficient que l’on exprimera en fonction de e, a, b, σ.
On se placera, pour la suite, dans le cas particulier où a = b. Dans ce cas le
coefficient A est donné par l’expression :

A =
πeσa4

16
8. Le dispositif précédent est utilisé dans les plaques électriques pour chauffer

les casseroles et leur contenu.
Comment peut-on créer, en pratique, le champ magnétique souhaité ?
Citer quelques avantages de ce dispositif de chauffage par rapport aux
plaques électriques classiques.

9. Le champ magnétique utilisé a une pulsation de l’ordre de 2× 105 rad · s−1

(courant de fréquence f de l’ordre de 30 kHz). Son intensité Bm est de l’ordre
de 10−4 T.
On considère une plaque à induction de rayon b = 10 cm et une casserole
dont le fond a le même rayon a = b = 10 cm, une épaisseur e = 1, 0 cm et
une conductivité σ = 6, 0× 107 S ·m−1.
Déterminer l’ordre de grandeur de la puissance moyenne 〈Pjoule〉 dissipée
dans le fond de la casserole.

Réponses : 1 : ~j = σ ~E ; 2 : C(r, t) =
j(r, t)× 2πr

σ
; 3 : r < a Φ(t) = B(t)× πr2,

a < r < b Φ(t) = B(t)× πa2 ; 5 : r < a, j(r, t) =
σωBmr sin (ωt)

2
;

a < r < b, j(r, t) =
σωBma

2 sin (ωt)

2r
; 6 : Pv = ~j. ~E = j2/σ ;

7 : 〈Pjoule〉 = ω2B2
m
eσπa4

4

[
1

4
+ ln

(
b

a

)]
; 9 : 〈Pjoule〉 ≈ 5 kW

EM113. Principe du haut-parleur électrodynamique (**)

On considère le haut-parleur ci-dessus. L’aimant fixe crée un champ magnétique
radial dans l’entrefer, de norme B constante à une distance a de l’axe de symétrie
Oz du système. La membrane de masse m est solidaire d’une bobine constituée

de N spires circulaires de rayon a, de longueur totale l0 = N × 2πa, d’inductance
propre L et de résistance R.

La bobine peut se translater sans frottement selon Oz. Un système de ressorts se
comportant comme un ressort unique de raideur k la relie à l’aimant. La résistance
de l’air au déplacement de la membrane est modélisée par une force ~f = −λ~v, où
~v est le vecteur vitesse de l’ensemble {bobine,membrane}. On pose ω0 =

√
k/m.

On soumet la bobine à une tension u(t).
1. En analysant qualitativement le comportement du système, expliquer com-

ment il peut générer une onde acoustique.
2. On repère le centre d’inertie du système {bobine, membrane} par son abs-

cisse z. Établir l’équation mécanique du système.
3. Établir l’équation électrique du système. On établira l’expression de la f.e.m

induite dans le bobinage à l’aide d’un bilan de puissance.
4. On se place en régime sinusoïdal forcé et on utilise la notation complexe.

Montrer que l’impédance électrique du haut-parleur se met sous la forme
Z = R + jLω + Zm. Justifier le nom « impédance motionnelle » donnée à
Zm.

Mettre
1

Zm
sous la forme

1

R0
+jC0ω+

1

jL0ω
et donner un schéma électrique

équivalent du montage faisant intervenir la résistance R0, l’inductance L0

et la capacité C0. Exprimer L0C0 et commenter le résultat obtenu.
5. Faire le bilan énergétique du système. Montrer que : 〈ui〉 =

〈
Ri2
〉

+
〈
λv2
〉
.

Justifier que le rendement électroacoustique du haut-parleur soit ρ =

〈
λv2
〉

〈ui〉
.

Réponses : 2 : z̈ +
λ

m
ż + ω2

0z = − il0B
m

; 3 : u(t) = L
di(t)

dt
+Ri(t)− l0Bż(t) ;

4 : Zm =
l20B

2

m
× jω

ω2
0 − ω2 + j

ωλ

m

; R0 =
l20B

2

λ
; C0 =

m

l20B
2

; L0 =
l20B

2

mω2
0

; L0C0 = 1/ω2
0

5 : u× i =
d

dt

(
Li2

2
+

1

2
mż2 +

1

2
kz2

)
+Ri2 + λż2
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