

SVT: 1ère Année BAC SM

Semestre 2 Devoir 3 Modèle 2

Professeur: Mr BAHSINA Najib

I- Restitution des connaissances (8 pts)

1-1/ Exercie 1 (2 pts)

1. Définir:

Plasmide:

Transcription inverse:

I- Restitution des connaissances (8 pts)

1-2/ Exercie 2 (4 pts)

Cochez la suggestion correcte:

A- Les yeux de réplication apparaissent au cours de :

- 1. la prophase.
- 2. l'interphase.
- 3. la métaphase.
- 4. la télophase.

B- Au cours de la phase G1 du cycle cellulaire :

- 1. la cellule se prépare à la division cellulaire
- 2. la membrane nucléaire disparaît
- 3. les chromosomes sont dédoublés
- 4. l'ADN n'est pas dupliqué.

C- La traduction de l'ARN messager mature :

- 1. se déroule dans le noyau
- 2. se déroule dans le cytoplasme
- 3. produit une séquence d'acides aminés correspondant à tous les codons du gène
- 4. peut produire, à partir d'un même gène, des protéines différentes

D- La mitose est une division qui permet :

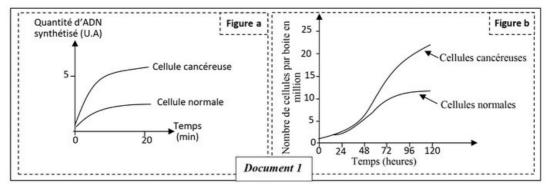
- 1. le brassage intrachromosomique suite au phénomène d'enjambement chromosomique.
- 2. la conservation du nombre des chromosomes chez les cellules filles en comparaison avec la cellule mère.
- 3. le passage d'une cellule mère diploïde à deux cellules filles haploïdes.
- 4. la séparation des chromosomes homologues lors de l'anaphase.

E- Une mutation:

- 1. peut créer un nouveau gène
- 2. est toujours néfaste pour la cellule
- 3. peut conduire à une modification du phénotype
- 4. est systématiquement transmise à la descendance

II- Raisonnement scientifique et communication écrite et graphique (12 pts)

2-1/ Exercice 4 (6 pts)


Le cancer du poumon est une maladie de plus en plus courante.

Elle est due à l'apparition des cellules cancéreuses qui finissent par la formation d'une tumeur pulmonaire.

La prolifération des cellules pulmonaire est contrôlée par le gène EGFR, localisé au niveau du chromosome 7 chez l'Homme.

Pour comprendre l'origine de cette maladie on propose les données suivantes :

Le document 1 présente les résultats de mesure de la vitesse de duplication de l'ADN des cellules normales et des cellules cancéreuses (figure a) et de dénombrement des cellules normales et des cellules cancéreuses après leur culture dans les mêmes conditions (figure b) :

1. En exploitant le document 1, proposez une hypothèse pour expliquer l'apparition du cancer de poumon chez l'Homme.

II- Raisonnement scientifique et communication écrite et graphique (12 pts)

2-1/ Exercice 4 (6 pts)

Le document 2 présente un fragment du brin transcrit du gène EGFR chez une personne saine et une personne atteinte du cancer de poumon :

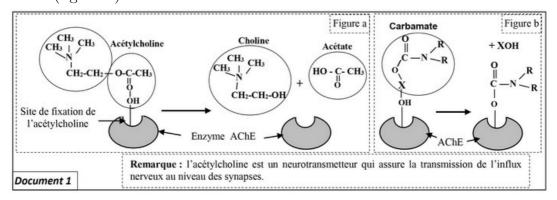
Numéro du triplet :		1	2	3	4	5	6	7	8
Fragment du brin transcrit du gène EGFR d'une personne saine :		CCC	GTC	GCT	ATC	AAG	GAA	TTA	AGA
Fragment du brin transcrit du gène EGFR d'une personne malade :		CCC	GTC	CGC	TAT	CAA	GGA	ATT	AAG
Document 2				_	25.030.00	→ §	sens de le	cture	

Le document 3 présente un extrait du tableau du code génétique :

C	Codons	CAG CAA	UGA UAG UAA	UCC UCG UCU	GUU GUC	GGU GGA GGG	UUU UUC	AUC AUA AUU	CGA CGU	GCG GCU	CCA
	Acides iminés	Gln	Codon stop	Ser	Val	Gly	Phe	Ιℓe	Arg	Ala	Pro

- 2. Donnez la séquence de l'ARNm et la séquence des acides aminés correspondantes aux fragments du brin transcrit du gène EGFR chez la personne saine et la personne malade.
- 3. Vérifiez l'hypothèse proposée dans votre réponse à la question 1, en déterminant l'origine génétique de la maladie.

II- Raisonnement scientifique et communication écrite et graphique (12 pts)


2-2/ Exercice 5 (6 pts)

Les moustiques Culex pipiens transmettent, par leurs piqûres, de nombreuses maladies (filariose, fièvre du Nil...), ils deviennent actuellement résistants aux insecticides à base de carbamates.

Pour expliquer l'origine de cette résistance on propose les données suivantes :

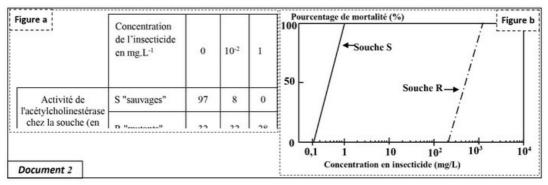
L'acétylcholinestérase (AChE) est une enzyme qui hydrolyse l'acétylcholine au niveau des synapses cholinergique. Cette dégradation est indispensable au bon fonctionnement du système nerveux des insectes. Les carbamates agissent au niveau du système nerveux des insectes en inhibant l'activité de l'acétylcholinestérase.

Le document 1 présente la réaction enzy matique de l'acétylcholinestérase (figure a) et l'action du carbamate sur le site actif de cette enzy me spécifique à la fixation de l'acétylcholine (figure b) :

1. En vous basant sur le document 1, décrivez le mode d'action de l'acétylcholinestérase et l'effet du carbamate sur cette enzyme.

II- Raisonnement scientifique et communication écrite et graphique (12 pts)

2-2/ Exercice 5 (6 pts)

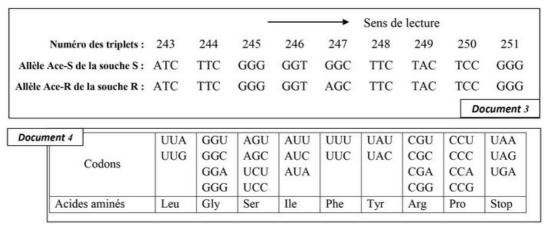

Chez les moustiques Culex pipiens, la synthèse de l'acétylcholinestérase est contrôlée par un gène ayant deux allèles différents:

Les moustiques résistants (souche R) possèdent deux allèles mutés (allèles Ace-R).

Alors que les moustiques sensibles (souche S) possèdent deux allèles sauvages (allèles Ace-S).

Le document 2 présente les résultats des études de l'action d'un insecticide à base de carbamates sur les deux souches de moustiques, la figure (a) présente des mesures de l'activité de l'acétylcholinestérase de chaque souche en fonction de la concentration en insecticide, à base de carbamates, appliqué.

La figure (b) montre le taux de mortalité de chaque souche en fonction de la concentration en insecticide appliqué :



2. En exploitant le document 2, montrez la relation entre la mortalité des souches de moustiques S et R et l'activité de l'acétylcholinestérase, puis proposez une hypothèse pour expliquer la résistance des souches R à l'insecticide utilisé.

II- Raisonnement scientifique et communication écrite et graphique (12 pts)

2-2/ Exercice 5 (6 pts)

Pour vérifier votre hypothèse, on propose le document 3 qui donne la séquence nucléotidique d'un fragment de l'allèle (brin non transcrit) du gène Ace codant pour la synthèse de l'acétylcholinestérase chez la souche S et la souche R, et le document 4 qui présente un extrait du code génétique :

3. En utilisant les données des documents 3 et 4, déterminez l'ARNm et la séquence des acides aminés correspondantes à chaque fragment du gène Ace chez les deux souches S et R et vérifiez votre hypothèse en mettant en évidence la relation caractère - gène.