

Mathématiques : 2Bac SMA-SMB

Semestre 1 Devoir 3 Modèle 2

Professeur: Mr CHEDDADI Haitam

I- Exercice 1 (8 pts)

On considère la fonction f définie par : $f(x) = \frac{e^x}{e^{2x}+1}$

- 1. Étudier la parité de f.
- 2. Calculer $\lim_{x\to+\infty} f(x)$, interpréter le résultat.
- 3. Montrer que $.(\forall x \in \mathbb{R}) \ f'(x) = \frac{e^x(1-e^{2x})}{\left(e^{2x}+1\right)^2}$
- 4. Étudier le sens de variation de f et donner le tableau de variation.
- 5. Déduire que $(\forall x \in \mathbb{R}) \ 0 < f(x) \le \frac{1}{2}$.
- 6. Construire la courbe (\mathscr{C}_f) .
- 7. Montrer que l'équation f(x) = x admet dans $I = [0; \frac{1}{2}]$ une seule solution α .
- 8. Montrer que $(\forall x \in I) |f'(x)| \leq \frac{1}{2}$.

On considère la suite $(u_n)_{n\in\mathbb{N}}$)n définie par $u_0=0$ et $u_{n+1}=f(u_n)$.

- 9. Montrer que $(\forall n \in \mathbb{N})$ $0 \le u_n \le \frac{1}{2}$.
- 10. Montrer que $(\forall n \in \mathbb{N}) |u_{n+1} \alpha| \leq \frac{1}{2} |u_n \alpha|$.
- 11. Déduire que $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

II- Exercice 2 (7 pts)

Soit n un entier non nul.

On considère la fonction f_n définie par : $f_n(x) = e^x + \frac{x}{n}$

- 1. Calculer les limites de f_n .
- 2) Étudier les variations de f_n , et dresser le tableau de variation.
 - 3. Montrer que l'équation $f_n(x) = 0$ admet une seule solution a_n , et que $a_n \in]-\infty; 0[$.
 - 4. Montrer que la suite $(a_n)_{n\geq 3}$ est décroissante.
- 5. Montrer que $f_n\left(-\ln\sqrt{n}\right) > 0$, et déduire que $\lim_{n \to +\infty} a_n = -\infty$.
- 6. Déterminer le signe $f_{n}\left(-\ln\left(n\right)\right)>0,$ déduire $\lim_{n\to+\infty}\frac{a_{n}}{n}$.
- 7. Vérifier que $(\forall n \in \mathbb{N}^*)$ $\frac{a_n}{\ln(n)} = -1 + \frac{\ln(-a_n)}{\ln(n)}$, puis déduire que $\lim_{n \to +\infty} \frac{a_n}{\ln(n)} = -1$.

III- Exercice 3 (5 pts)

On pose $g(z) = \frac{1-z}{\overline{z}}$ pour tout $z \in \mathbb{C}^*$.

- 1. Résoudre dans $\mathbb C$ l'équation g(z) = 1 i.
- 2. Montrer que $(\forall z \in \mathbb{C}^*)$ $g(z) = \overline{g(z)} \Leftrightarrow (z \overline{z})(z + \overline{z} + 1) = 0$.
- 3. En déduire l'ensemble $E=\{M\left(z\right)\in P/g\left(z\right)\in\mathbb{R}\}.$

On pose $z = re^{i\theta}$.

4. Montrer que $1-\cos\theta=2\cos^2\left(\frac{\theta}{2}\right)$, puis déterminer $g\left(z\right)$ sous forme trigonométrique.