

Mathématiques : 2Bac SPC-SVT-Agro-STE-STM

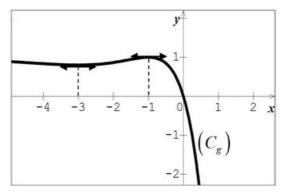
Semestre 2 Devoir 1 Modèle 2

Professeur: Mr CHEDDADI Haitam

I- Exercice 1

Soit g la fonction numérique définie sur \mathbb{R} par : $g(x) = 1 - (x+1)^2 e^x$

- 1. Vérifier que g(0) = 0.
- 2. A partir de la courbe représentative (\mathscr{C}_g) de la la fonction g (figure ci-dessous), montrer que $g(x) \geq 0$ pour tout x appartenant à $]-\infty;0]$, et que pour tout x appartenant à $[0,+\infty[$,



On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = x + 1 - (x^2 + 1)e^x$ Soit (\mathscr{C}_f) la courbe représentative de f dans un repère orthonormé $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ (unité : 2cm).

- 3. Vérifier que $f(x) = x + 1 4\left(\frac{x}{2}e^{\frac{x}{2}}\right)^2 e^x$ pour tout x appartenant à \mathbb{R} puis en déduire que $\lim_{x \to -\infty} f(x) = -\infty$.
- 4. Calculer $\lim_{x\to-\infty} [f(x)-(x+1)]$, et en déduire que la droite (D) d'équation y=x+1 est asymptote à la courbe (\mathscr{C}_f) au voisinage de $-\infty$.
- 5. Montrer que la courbe (\mathscr{C}_f) est en dessous de la droite (D).
- 6. Montrer que $\lim_{x\to +\infty} f(x) = -\infty$ (on pourra écrire f(x) sous la forme $x\left[1+\frac{1}{x}-\left(x+\frac{1}{x}\right)e^x\right]$).
- 7. Montrer que la courbe (\mathscr{C}_f) admet au voisinage de $+\infty$ une branche parabolique dont on déterminera la direction.
- 8. Montrer que f'(x) = g(x) pour tout x appartenant à \mathbb{R} .
- 9. Montrer que la fonction f est croissante sur $]-\infty;0]$, et décroissante sur $[0,+\infty[$, puis dresser le tableau de variations de la fonction f sur \mathbb{R} .
- 10. Montrer que la courbe (\mathscr{C}_f) admet deux points d'inflexion d'abscisses -3 et -1.

11. Construire dans le même repère $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ la droite (D) et la courbe $\left(\mathscr{C}_f\right)$ (on prendra $f(-3) \approx -2, 5$ et $f(-1) \approx -0, 75$).

II- Exercice 2

1. Résoudre dans l'ensemble des nombres complexes $\mathbb C$ l'équation : $z^2+4z+8=0$ Dans le plan complexe rapporté à un repère orthonormé direct $\left(O,\overrightarrow{u},\overrightarrow{v}\right)$, on considère les points A,B et C d'affixes respectives $a=-2+2i,\,b=4-4i$ et c=4+8i.

Soit z l'affixe d'un point M du plan et z' l'affixe du point M', image de M par la rotation R de centre A et d'angle $-\frac{\pi}{2}$.

- 2. Montrer que z' = -iz 4.
- 3. Vérifier que le point B est l'image du point C par la rotation R, et en déduire la nature du triangle ABC.

Soit ω l'affixe du point Ω , milieu du segment [BC].

- 4. Montrer que $|c \omega| = 6$.
- 5. Montrer que l'ensemble des points M d'affixe z tels que $|z \omega| = 6$ est le cercle circonscrit au triangle ABC.