

Mathématiques: Tronc Commun

Séance 13 (Le produit scalaire)

Professeur: Mr ETTOUHAMY Abdelhak

Sommaire

I- Produit scalaire de deux vecteurs

- 1-1/ Norme d'un vecteur
- 1-2/ Produit scalaire de deux vecteurs
- II- Forme trigonométrique du produit scalaire de deux vecteurs non nuls
- III- Orthogonalité de deux vecteurs
- IV- Propriétés du produit scalaire
- V- Applications du produit scalaire
- 5-1/ Relations métriques dans un triangle rectangle
- 5-2/ Théorème d'El Kashi
- 5-3/ Théorème de la médiane

VI- Exercices

- 6-1/ Exercice 1
- 6-2/ Exercice 2
- 6-3/ Exercice 3
- 6-4/ Exercice 4

I- Produit scalaire de deux vecteurs

1-1/ Norme d'un vecteur

Définition

Soit \overrightarrow{u} un vecteur du plan (P).

A et B deux points de (P) tel que $\overrightarrow{u}=\overrightarrow{AB}$.

La distance entre A et B est notée par AB ou encore $||\overrightarrow{AB}||$. On lit la norme du vecteur \overrightarrow{u} ou \overrightarrow{AB} .

Donc $||\overrightarrow{AB}|| = AB$.

1-2/ Produit scalaire de deux vecteurs

 \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan tel que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$.

le produit scalaire de \overrightarrow{u} et \overrightarrow{v} est noté \overrightarrow{u} . \overrightarrow{v} tel que :

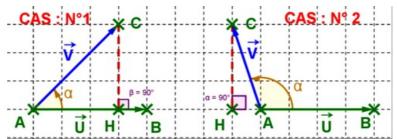
Si
$$\overrightarrow{u}=\overrightarrow{0}$$
 ou $\overrightarrow{v}=\overrightarrow{0}$, on a $:\overrightarrow{u}.\overrightarrow{v}=0$

Si $\overrightarrow{u} \neq \overrightarrow{0}$ et $\overrightarrow{v} \neq \overrightarrow{0}$ et H la projection orthogonale de C sur la droite (AB) (

$$A
eq B$$
 car $\overrightarrow{u}
eq \overrightarrow{0}$), alors

$$\overrightarrow{u}$$
 . $\overrightarrow{v}=\overrightarrow{AB}$. $\overrightarrow{AC}=AB imes AH$ si \overrightarrow{AB} et \overrightarrow{AH} ont même sens (Cas n°1).

$$\overrightarrow{u}$$
. $\overrightarrow{v}=\overrightarrow{AB}$. $\overrightarrow{AC}=-AB imes AH$ si \overrightarrow{AB} et \overrightarrow{AH} ont des sens opposés (Cas n°2).



Remarques

La projection orthogonale de B sur la droite (AB) est B, d'où

 \overrightarrow{u} . $\overrightarrow{u}=\overrightarrow{AB}$. $\overrightarrow{AB}=AB\times AB=AB^2>0$, on note \overrightarrow{u} . \overrightarrow{u} o par \overrightarrow{u}^2 , et on lit le carré scalaire.

 \overrightarrow{u}^2 est un nombre positif de même que \overrightarrow{AB}^2 est un nombre positif.

On a
$$\overrightarrow{AB}^2=AB^2=||\overrightarrow{AB}||^2$$
 , d'où $||\overrightarrow{AB}||=\sqrt{\overrightarrow{AB}^2}$, et de même on a $||\overrightarrow{u}||=\sqrt{\overrightarrow{u}^2}$

II- Forme trigonométrique du produit scalaire de deux vecteurs non nuls

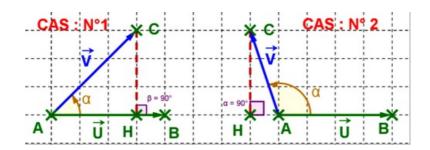
Activité

 \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls du plan tel que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$.

H est la projection orthogonale de C sur la droite (AB) (A
eq B car $\overrightarrow{u}
eq \overrightarrow{0}$),

On considère l'angle
$$\left(\overrightarrow{AB},\overrightarrow{AC}\right)$$
 de mesure $\overline{\left(\overrightarrow{AB},\overrightarrow{AC}\right)}\equiv \alpha\ [2\pi]$

1. Pour chaque cas exprimer AH en fonction de AC et $\cos \alpha$.



Propriété

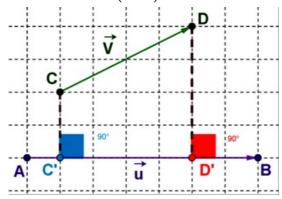
 $\frac{\overrightarrow{u} \text{ et } \overrightarrow{v} \text{ deux vecteurs non nuls du plan tel que } \overrightarrow{u} = \overrightarrow{AB} \text{ et } \overrightarrow{v} = \overrightarrow{AC} \text{ et } \overrightarrow{(\overrightarrow{u},\overrightarrow{v})} = \overrightarrow{(\overrightarrow{AB},\overrightarrow{AC})} \equiv \alpha \ \ [2\pi]$

La forme trigonométrique du produit scalaire de \overrightarrow{u} et \overrightarrow{v} est :

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos \alpha$$
, ou encore $\overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos \alpha$

Remarque

Le produit scalaire des vecteurs $\overrightarrow{v}=\overrightarrow{CD}$ et $\overrightarrow{u}=\overrightarrow{AB}$ est le nombre réel \overrightarrow{AB} . $\overrightarrow{CD}=\overrightarrow{AB}$. $\overrightarrow{C'D'}$ tel que C' et D' sont respectivement les projections orthogonales de C et D sur la droite (AB):



III- Orthogonalité de deux vecteurs

Activité

 \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls du plan tel que $\overrightarrow{u}=\overrightarrow{AB}$ et $\overrightarrow{v}=\overrightarrow{AC}$.

- 1. Donner la forme trigonométrique de \overrightarrow{u} . \overrightarrow{v} .
- 2. Donner la condition nécessaire et suffisante pour que \overrightarrow{u} et \overrightarrow{v} soient orthogonales.

Propriété

 \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls du plan.

Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si \overrightarrow{u} . $\overrightarrow{v}=0$ On note $\overrightarrow{u}\perp\overrightarrow{v}$.

IV- Propriétés du produit scalaire

Propriétés

Soient \overrightarrow{u} et \overrightarrow{v} et \overrightarrow{w} trois vecteurs du plan (P)

On a:

1. Linéarité du produit scalaire :

$$\left\{egin{array}{l} \left(\overrightarrow{u}+\overrightarrow{v}
ight).\overrightarrow{w}=\overrightarrow{u}.\overrightarrow{w}+\overrightarrow{v}.\overrightarrow{w} \ \overrightarrow{w}.\left(\overrightarrow{u}+v
ight)=\overrightarrow{w}.\overrightarrow{u}+\overrightarrow{w}.\overrightarrow{v} \ \left(lpha\overrightarrow{u}
ight).\overrightarrow{v}=\overrightarrow{u}\left(lpha\overrightarrow{v}
ight)=lpha imes\left(\overrightarrow{u}.\overrightarrow{v}
ight) \end{array}
ight.$$

2. Positivité du produit scalaire :

$$\overrightarrow{u}^2 > 0$$

3. produit scalaire est non dégénéré :

$$\overrightarrow{u}$$
. $\overrightarrow{u} = 0 \Leftrightarrow \overrightarrow{u} = \overrightarrow{0}$

Conséquences

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan (P)

On a:

$$1 \left(\overrightarrow{u} + \overrightarrow{v}\right)^{2} = \overrightarrow{u}^{2} + 2\overrightarrow{u}.\overrightarrow{v} + \overrightarrow{v}^{2} = \left|\left|\overrightarrow{u}\right|\right|^{2} + 2\overrightarrow{u}.\overrightarrow{v} + \left|\left|\overrightarrow{v}\right|\right|^{2}$$

$$2 \left(\overrightarrow{u} - \overrightarrow{v}\right)^{2} = \overrightarrow{u}^{2} - 2\overrightarrow{u}.\overrightarrow{v} + \overrightarrow{v}^{2} = \left|\left|\overrightarrow{u}\right|\right|^{2} - 2\overrightarrow{u}.\overrightarrow{v} + \left|\left|\overrightarrow{v}\right|\right|^{2}$$

$$3 \left(\overrightarrow{u} + \overrightarrow{v}\right).\left(\overrightarrow{u} - \overrightarrow{v}\right) = \overrightarrow{u}^{2} - \overrightarrow{v}^{2} = \left|\left|\overrightarrow{u}\right|\right|^{2} - \left|\left|\overrightarrow{v}\right|\right|^{2}$$

$$4 \overrightarrow{u}.\overrightarrow{v} = \frac{1}{2} \left[\left|\left|\overrightarrow{u}\right| + \overrightarrow{v}\right|\right|^{2} - \left|\left|\overrightarrow{u}\right|\right|^{2} - \left|\left|\overrightarrow{v}\right|\right|^{2}\right]$$

V- Applications du produit scalaire

5-1/ Relations métriques dans un triangle rectangle

Activité

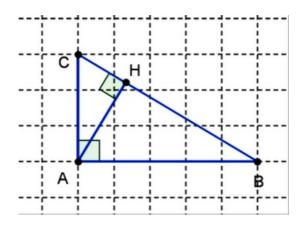
ABC est un triangle rectangle en A.

Le point H est la projection orthogonale de A sur la droite (BC).

- 1. Calculer $\cos B$ en utilisant les deux triangles ABC et ABH.
- 2. Montrer que $BA^2 = BH \times BC$.
- 3. Montrer que $AH^2=AB^2-HB^2$, et que $AH^2=AC^2-HC^2$.
- 4. En déduire que $2AH^2=BC^2-\left(HB^2+HC^2\right)$.

On remarque que $\left(HB+HC\right)^2-2HB imes HC=BC^2-2HB imes HC.$

5. En déduire que $AH^2 = HB \times HC$.



Propriété

ABC est un triangle rectangle en A.

Le point H est la projection orthogonale de A sur la droite (BC). On a :

$$BC^2 = BA^2 + AC^2$$

 $BA^2 = BH \times BC$
 $CA^2 = CH \times CB$
 $AH^2 = HB \times HC$

On les appelle les relations métriques dans un triangle rectangle.

5-2/ Théorème d'El Kashi

Théorème

Dans tout triangle ABC, on pose AB=c et AC=b et BC=a.

On a:

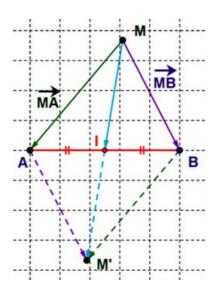
1-
$$BC^2=BA^2+AC^2-2AB\times AC\times\cos A$$
 ou encore $a^2=c^2+b^2-2c\times b\times\cos A$
2- $AC^2=AB^2+BC^2-2AB\times BC\times\cos B$ ou encore $b^2=c^2+a^2-2c\times a\times\cos B$
3- $AB^2=AC^2+CB^2-2AC\times CB\times\cos C$ ou encore $c^2=b^2+a^2-2b\times a\times\cos C$

5-3/ Théorème de la médiane

Soit un segment [AB] du plan (P), le point I est son milieu.

Pour tout point M du plan (P), on a :

$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$



VI- Exercices

6-1/ Exercice 1

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan.

1. Calculer \overrightarrow{u} . \overrightarrow{v} dans les deux cas suivants :

$$egin{aligned} 1 & ||\overrightarrow{u}|| = 1 \; ; \; ||\overrightarrow{v}|| = \sqrt{3} \; ; \; \overline{\left(\overrightarrow{u}.\overrightarrow{v}
ight)} \equiv rac{\pi}{6} \left[2\pi
ight] \ 2 & ||\overrightarrow{u}|| = 2 \; ; \; ||\overrightarrow{v}|| = rac{2}{\sqrt{2}} \; ; \; \overline{\left(\overrightarrow{u}.\overrightarrow{v}
ight)} \equiv rac{5\pi}{4} \left[2\pi
ight] \end{aligned}$$

Soit ABC un triangle équilatéral tel que AB=4.

2. Calculer \overrightarrow{AC} . \overrightarrow{CB} .

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan.

3. Déterminer les mesures possibles de l'angle orienté $\overline{\left(\overrightarrow{u}\,.\,\overrightarrow{v}\right)}$ sachant que $||\overrightarrow{u}||=4$, $||\overrightarrow{v}||=\sqrt{2}$ et $\overrightarrow{u}\,.\,\overrightarrow{v}=-2\sqrt{6}$.

Soit ABC un triangle isocèle en A tel que AB=3 et $BC=3\sqrt{3}$.

- 4. Calculer \overrightarrow{CA} . \overrightarrow{CB} .
- 6. En déduire \widehat{CAB} .

6-2/ Exercice 2

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs orthogonaux du plan tels que $||\overrightarrow{u}||=4$ et $||\overrightarrow{v}||=5$.

1. Déterminer le réel m sachant que

$$\Big(m\overrightarrow{u}+\overrightarrow{v}\Big).\Big(\overrightarrow{u}+\overrightarrow{v}\Big)=13.\cos\Big(\widehat{A}\Big)=-rac{1}{2\sqrt{2}}.$$

Soit ABC un triangle tel que AB=1, $AC=\sqrt{2}$ et $\cos\left(\widehat{A}\right)=-rac{1}{2\sqrt{2}}.$

2. Calculer \overrightarrow{AB} . \overrightarrow{AC} .

Considérons D un point du plan défini par $\overrightarrow{AD} = \frac{1}{3} \left(\overrightarrow{AB} + 2 \overrightarrow{AC} \right)$.

3. Calculer \overrightarrow{AB} . \overrightarrow{AD} .

6-3/ Exercice 3

ABCD est un parallélogramme tel que $\widehat{BAD}=\frac{\pi}{3}$ et AD=4 et CD=6.

Soit O le milieu du segment $\lceil AB \rceil$.

- 1. Calculer les distances BD et AC.
- 2. Montrer que pour tout point M du plan, on a $MA^2+MB^2=2MO^2+18.$
- 3. En déduire l'ensemble des points M du plan tel que $MA^2+MB^2=24.$ Soient ABC un triangle rectangle en A, et H le projeté orthogonal de A sur

Soient ABC un triangle rectangle en A, et H le projeté orthogonal de A sui (BC) et AB=3 et AC=4.

4. Calculer les longueurs BC, HC, HB et AH.

6-4/ Exercice 4

Soit ABC un triangle tel que AB=3 et AC=1 et $\cos\left(\widehat{BAC}\right)=-\frac{1}{3}$.

- 1. Vérifier que \overrightarrow{AB} . $\overrightarrow{AC} = -1$.
- 2. Calculer la distance BC.

Soient I et J les milieux respectifs de [BC] et [AC].

3. Calculer AI et BJ.

Soit E un point du plan tel que $\overrightarrow{AE} = \frac{4}{9}\overrightarrow{AB}$.