

Mathématiques : 2Bac SMA-SMB

Séance 11-2: Espaces vectoriels (Exercices)

Professeur: Mr CHEDDADI Haitam

Sommaire

IV- Exercices

4-1/ Exercice 1

4-2/ Exercice 2

4-3/ Exercice 3

4-4/ Exercice 4

IV- Exercices

4-1/ Exercice 1

On munit \mathbb{R}_+^* d'une loi de composition interne \times et d'une loi de composition externe \bullet comme suit :

- La loi \times est la multiplication usuelle dans \mathbb{R}_{+}^{*} .
- $(orall \lambda \in \mathbb{R}) \left(orall x \in \mathbb{R}_+^*
 ight) \lambda ullet x = x^\lambda$
 - 1. $(\mathbb{R}_+^*; \times; \bullet)$ est-il un espace vectoriel réel ?

4-2/ Exercice 2

On considère l'ensemble suivant :

$$E = \left\{ M = egin{pmatrix} a & c & b \ b & a+c & b+c \ c & b & a+c \end{pmatrix} / \left(a;b;c
ight) \in \mathbb{R}^3
ight\}$$

On pose:

$$I = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \; ; \; J = egin{pmatrix} 0 & 0 & 1 \ 1 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix} \; ; \; K = egin{pmatrix} 0 & 1 & 0 \ 0 & 1 & 1 \ 1 & 0 & 1 \end{pmatrix} \; .$$

- 1. Vérifier que $J^2=K$ et $K^2=J+K$ et JK=KJ=I+J.
- 2. Montrer que $(E;+;\bullet)$ est un espace vectoriel réel, et déterminer sa dimension.
- 3. Montrer que $(E; +; \times)$ est un anneau commutatif.
- 4. Déterminer J^{-1} .

4-3/ Exercice 3

Partie A

On définit dans \mathbb{C} une loi de composition interne * comme suit :

Pour tout
$$(a;b;x;y) \in \mathbb{R}^4$$
, $(a+ib)*(x+iy) = ax + i(ay + bx)$

- 1. Montrer que la loi * est commutative, associative et admettant un élément neutre qu'on déterminera.
- 2. Déterminer G, ensemble des éléments symétrisables pour la loi * et montrer que (G; *) est un groupe commutatif.

Soit H une partie de \mathbb{C} telle que $H \neq \{0\}$.

- 3. Montrer que si (H; *) est groupe alors $H \subset G$.
- 4. Montrer que l'ensemble E définie par $E=\left\{e^t+ite^t/t\in\mathbb{R}\right\}$ est un sous-groupe de (G;*)
- 5. Montrer que $(\forall z \in G) \ \bar{z} \in G$
- 6. Montrer que l'application $f: z \mapsto \bar{z}$ est un automorphisme de (G; *).
- 7. Montrer que * est distributive par rapport à l'addition dans \mathbb{C} .
- 8. Montrer que $(\mathbb{C}; *; +)$ est un anneau non intègre.
- 9. Déterminer les diviseurs de zéro dans l'anneau (\mathbb{C} ; *; +).

Partie B

On considère l'ensemble $\mathcal E$ suivant :

$$\mathscr{E}=\left\{ M\left(a;b
ight)=egin{pmatrix}a&-b\0&a\end{pmatrix}/\left(a;b
ight)\in\mathbb{R}^{2}
ight\}$$

- 1. Montrer que $(\mathcal{E}; +; \bullet)$ est un espace vectoriel réel et en déterminer une base.
- 2. Montrer que \mathscr{E} est stable dans $(\mathbb{M}_2(\mathbb{R}); \times)$.
- 3. Montrer que l'application $f: z = a + ib \mapsto M(a; b)$ est un isomorphisme de $(\mathbb{C}; *)$ dans $(\mathscr{E}; \times)$.
- 4. En déduire l'ensemble des matrices admettant un inverse dans $(\mathscr{E}; \times)$.

4-4/ Exercice 4

Partie A

On munit \mathbb{R} d'une loi de composition interne comme suit :

$$\left(orall\left(x;y
ight)\in\mathbb{R}^{2}
ight)x$$
 * $y=x+y-e^{xy}+1$

- 1. Montrer que la loi * est commutative dans \mathbb{R} .
- 2. Montrer que la loi * admet un élément neutre qu'on déterminera.
- 3. Sachant que l'équation (E): $3 + x e^{2x} = 0$ admet deux solutions réelles distinctes α et β , montrer que la loi * n'est pas associative.

Partie B

On rappelle que $(\mathbb{M}_2(\mathbb{R}); +; \times)$ est un anneau non commutatif d'élément unité $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, et que $(\mathbb{C}^*; \times)$ est un groupe commutatif.

Pour tout
$$(x;y)\in\mathbb{R}^{2},$$
 on pose $:M\left(x;y
ight) =egin{pmatrix} x&-2y\ rac{y}{2}&x \end{pmatrix}$

$$\operatorname{Soit}:F=\left(M\left(x;y
ight) /\left(x;y
ight) \in\mathbb{R}^{2}
ight)$$

- 1. Montrer que F est un sous-espace vectoriel de l'espace vectoriel réel $(\mathbb{M}_2(\mathbb{R}); +; \bullet)$.
- 2. Montrer que F est une partie stable de $(M_2(\mathbb{R}); \times)$.

On considère l'application φ de \mathbb{C}^* dans F est qui, à tout nombre complexe z = x + iy avec $(x; y) \in \mathbb{R}^2$, associe la matrice M(x; y).

3. Montrer que l'application φ est un morphisme de $(\mathbb{C}^*; \times)$ dans $(F; \times)$.

On pose :
$$F^* = F - \{M(0;0)\}$$

- 4. Montrer que $\varphi(\mathbb{C}^*) = F^*$
- 5. Montrer que $(F^*; \times)$ est un groupe commutatif.
- 6. Montrer que $(F^*; +; \times)$ est un corps commutatif