

## Physique et Chimie: Tronc Commun

Séance 18 (Caractéristiques de quelque dipôles passifs)

**Professeur: Mr EL GOUFIFA Jihad** 

### **Sommaire**

| I- I | DΙ | odi | les | pass | SITS |
|------|----|-----|-----|------|------|

- 1-1/ Définition
- 1-2/ Convention récepteur
- 1-3/ Exemples de dipôles passifs

## II- Caractéristiques de quelques dipôles passifs

- 2-1/ Définition
- 2-2/ Montage expérimental
- 2-3/ Caractéristique d'une lampe
- 2-4/ Caractéristique d'une diode normale
- 2-5/ Caractéristique d'une diode Zener
- 2-6/ Caractéristique d'une varistance ou VDR
- 2-7/ Caractéristique d'une thermistance CTN ou CTP
- 2-8/ Caractéristique d'une photorésistance ou LDR
- 2-9/ Caractéristique d'une diode électroluminescente ou LED

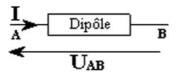
## **III- Exercices**

- 3-1/ Exercice 1
- 3-2/ Exercice 2
- 3-3/ Exercice 3
- 3-4/ Exercice 4

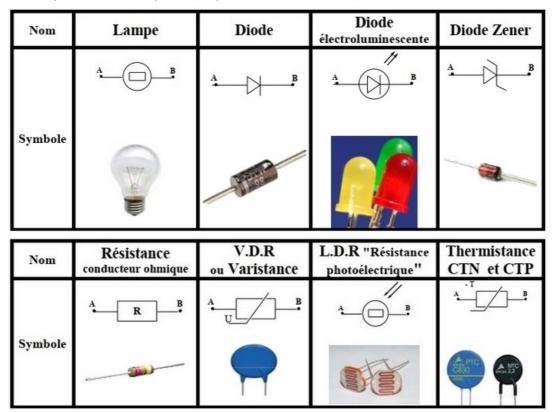
# I- Dipôles passifs

## 1-1/ Définition

Un dipôle est un composant électrique possédant deux bornes.


La caractéristique  $U=f\left(I\right)$  d'un dipôle est la représentation graphique de la tension U aux bornes du dipôle en fonction du courant I qui le traverse.

Le dipôle passif a une caractéristique qui passe par l'origine  $(U=0;\;I=0)$ .


• Exemples : lampe, conducteur ohmique...

## 1-2/ Convention récepteur

Dans la convention récepteur, la tension U aux bornes d'un dipôle passif et l'intensité I du courant qui le traverse sont de sens contraire :

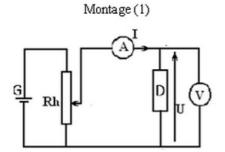


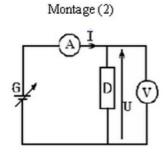
## 1-3/ Exemples de dipôles passifs



## II- Caractéristiques de quelques dipôles passifs

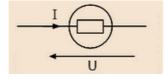
## 2-1/ Définition


La caractéristique courant-tension (ou tension-courant) d'un dipôle est la courbe reliant les variations de la tension U à ses bornes en fonction de l'intensité du courant I qui le traverse : I=f(U) ou U=g(I).


La caractéristique d'un dipôle passif passe toujours par l'origine des axes  $(U=0\;;\;I=0).$ 

Grâce à la caractéristique d'un dipôle électrique, on peut prévoir le comportement du dipôle sans savoir sa composition interne.

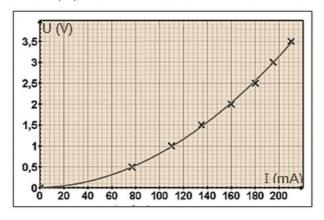
## 2-2/ Montage expérimental


Pour tracer la caractéristique d'un dipôle passif D, on réalise l'un des deux montages suivants :





# 2-3/ Caractéristique d'une lampe


### **Symbole**

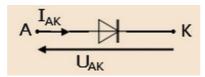


#### Tableau des résultats

| U (V)  | 0 | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 3,5 |
|--------|---|-----|-----|-----|-----|-----|-----|-----|
| I (mA) | 0 | 77  | 110 | 135 | 160 | 180 | 195 | 210 |

## Caractéristique U = f(I)




#### **Conclusion**

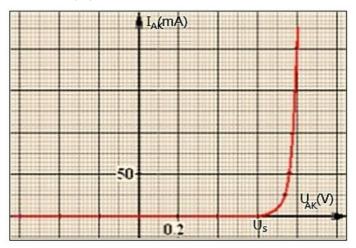
La caractéristique de la lampe à incandescence est non linéaire et passe par l'origine.

La lampe est un dipôle passif non linéaire et symétrique.

# 2-4/ Caractéristique d'une diode normale

# **Symbole**



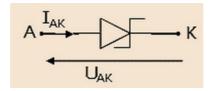

On appelle le sens de  ${\cal A}$  vers  ${\cal K}$  le sens direct ou le sens passant de la diode.

On appelle le sens de K vers A le sens indirect ou le sens bloquant de la diode.

### Tableau des résultats

| $U_{AK}(V)$ | -0,6 | -0,4 | -0,2 | 0 | 0,1 | 0,2 | 0,4 | 0,6 | 0,6 | 0,7 | 0,79 | 0,8 |
|-------------|------|------|------|---|-----|-----|-----|-----|-----|-----|------|-----|
| I(mA)       | 0    | 0    | 0    | 0 | 0   | 0   | 0   | 0   | 0   | 10  | 100  | 200 |

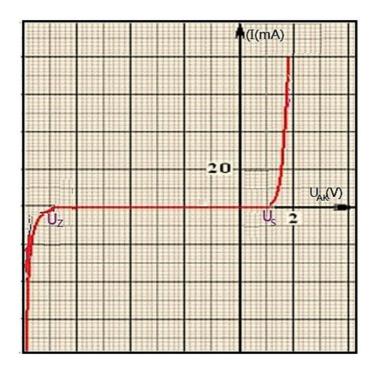
Caractéristique  $U=f\left(I\right)$ 




#### **Conclusion**

La diode est un dipôle passif non linéaire et asymétrique.

- Lorsque la diode est polarisée en direct  $U_{AK}>0$ , elle ne laisse pas passer le courant que si la tension dépasse la tension seuil  $U_s=0,6V$ .
- Lorsque la diode est polarisée en inverse  $U_{AK} < 0$ , elle se comporte comme un isolant ou un interrupteur ouvert.
- 2-5/ Caractéristique d'une diode Zener


### **Symbole**



#### Tableau des résultats

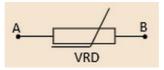
| $U_{AK}(V)$ | <b>-</b> 7,8 | -7,6 | <b>-</b> 7 | <b>-</b> 6 | -4 | -2 | 0 | 0,2 | 0,4 | 0,6 | 1,4 | 1,6 | 1,8 |
|-------------|--------------|------|------------|------------|----|----|---|-----|-----|-----|-----|-----|-----|
| I(mA)       | -60          | -20  | -2         | 0          | 0  | 0  | 0 | 0   | 0   | 0   | 10  | 40  | 80  |

Caractéristique  $U=f\left(I\right)$ 

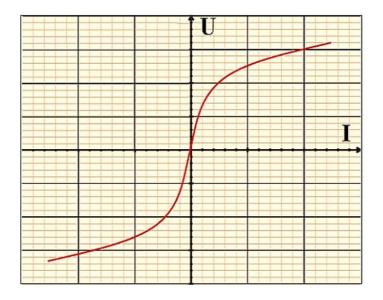


#### **Conclusion**

La diode Zener est un dipôle passif asymétrique, sa caractéristique est non linéaire.


- Dans le sens direct, la diode Zener se comporte comme une diode normale ou  $U_s=0,6V. \label{eq:Us}$
- En sens inverse, la diode Zener laisse passer le courant lorsque la tension  $U_{KA}$  dépasse une tension Zener  $U_Z$ .

# 2-6/ Caractéristique d'une varistance ou VDR


#### **Définition**

La varistance ou VDR est résistor dont la résistance dépend de la tension.

### **Symbole**



Caractéristique  $U=f\left(I\right)$ 

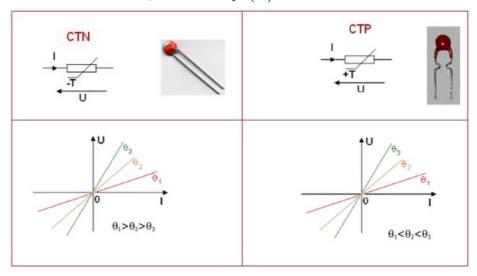


#### **Conclusion**

La caractéristique d'une VDR est symétrique et non linéaire donc ses deux bornes jouent le même rôle.

La résistance d'une VDR diminue quand la tension appliquée entre ses bornes augmente.

### 2-7/ Caractéristique d'une thermistance CTN ou CTP


#### **Définition**

La thermistance est un dipôle dont la résistance dépend de la température.

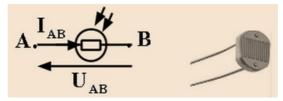
On distingue deux types:

- Les thermistances à Coefficient de température positif (CTP) : leurs résistances augmentent quand la température augmente.
- Les thermistances à Coefficient de température négatif (CTN) : leurs résistances diminuent quand la température augmente.

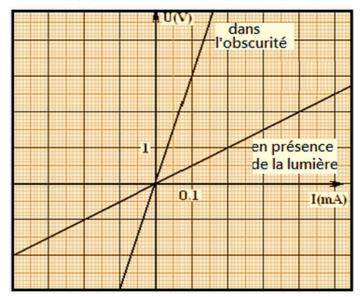
## Symbole et caractéristique $U=f\left(I\right)$



#### **Conclusion**


La thermistance est un dipôle passif, linéaire et symétrique, sa résistance varie avec la température.

## 2-8/ Caractéristique d'une photorésistance ou LDR


#### **Définition**

La photorésistance est un dipôle dont la résistance dépend de la l'éclairement qu'il reçoit.

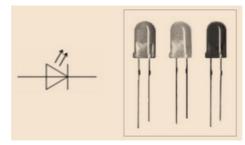
### **Symbole**



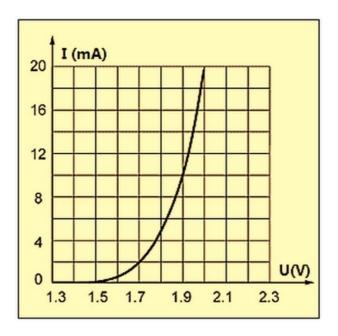
## Caractéristique $U=f\left(I\right)$



#### **Conclusion**


La photorésistance est un dipôle passif, linéaire et symétrique dont la résistance varie avec l'éclairage qui il reçoit.

## 2-9/ Caractéristique d'une diode électroluminescente ou LED


#### **Définition**

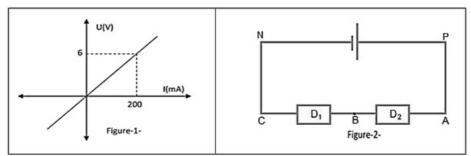
La diode électroluminescente se comporte comme une diode normale, et elle émet de la lumière lorsqu'elle est parcourue par un courant électrique.

# **Symbole**



Caractéristique U = f(I)




#### **Conclusion**

La LED est un dipôle passif non linéaire et non symétrique.

#### **III- Exercices**

### 3-1/ Exercice 1

On considère la caractéristique d'un conducteur ohmique  $D_1$  représentée dans la figure  ${\bf 1}$  :

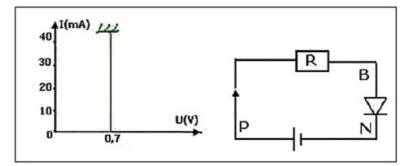


1. S'agit-il d'un dipôle passif ou actif ? Justifier votre réponse. Calculer la résistance  $R_1$  du conducteur ohmique  $D_1$ .

On branche le conducteur précédent dans le circuit de la figure 2 tel que la tension aux bornes du générateur est  $U_{PN}=12V$ , et  $D_2$  un conducteur ohmique de résistance  $R_2=50\Omega$ .

- 2. Présenter le sens du courant électrique et la tension aux bornes de chaque dipôle.
- 3. Calculer la valeur de l'intensité du courant qui circule dans le circuit.
- 4. Calculer la tension aux bornes de chaque conducteur ohmique.

On remplace le conducteur ohmique  $D_2$  par une diode de tension seuil est  $U_S=0,6V$ .


- 5. Faire le schéma du montage sachant que la diode est passante.
- 6. Calculer l'intensité du courant I' qui circule dans le circuit. En déduire la

tension aux bornes du conducteur ohmique  $D_1$ .

### 3-2/ Exercice 2

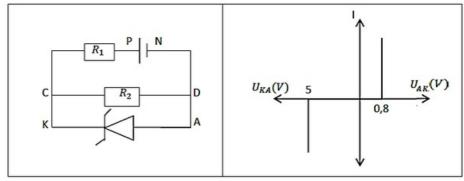
On considère le circuit électrique représenté sur la figure suivante et constitué de :

- un générateur sa tension entre ses bornes est  $U_{PN}=1,5V$ .
- ullet un conducteur ohmique de résistance R.
- un dipôle à jonction (sa caractéristique est représentée par la courbe cidessous).



1. Écrire l'expression de la tension  $U_{BN}$  en fonction de  $U_{PN}$  et R.

La valeur de l'intensité du courant qui circule dans le circuit est I=25mA.


- 2. Calculer la tension  $U_{BN}$ .
- 3. Calculer la résistance R du conducteur ohmique.
- 4. Quelle sera la valeur minimale de la résistance qu'il faut utiliser dans le circuit pour la diode ne se détériore pas ?

On inverse le branchement du générateur de la figure 1.

- 5. Comment la diode est polarisée ?
- 6. Déterminer la valeur de la tension  $U_{BP}$  et  $U_{BN}$ .

### 3-3/ Exercice 3

On considère le montage électrique constitué d'un générateur G, de deux conducteurs ohmique de résistance  $R_1$  et  $R_2$  et d'une diode zener (sa caractéristique est représenté dans la courbe suivante) :



On donne :  $U_{PN}=6V~;~R_1=10\varOmega~;~R_2=100\varOmega$ 

- 1. La diode est polarisée en directe ou en inverse ? Justifie votre réponse.
- 2. Calculer l'intensité électrique délivrée par le générateur.

3. Calculer l'intensité du courant électrique qui traverse la branche CD puis qui traverse la branche AK.

On remplace la diode zener par la diode à jonction polarisée en sens inverse.

- 4. Dessiner le nouveau montage du circuit.
- 5. Calculer le courant électrique délivré par générateur.

### 3-4/ Exercice 4

On suppose que la tension seuil de la diode est  $U_S=0,6V$  On donne  $R_1=320\varOmega$  et  $R_2=460\varOmega$ .

- 1. Pour quelle valeur de  $U_{PN}$  la diode devient-elle passante ? On prend  $U_{PN}=6V$
- 2. Calculer  $I_D$ , l'intensité du courant qui circule dans la diode
- 3. Déduire les tensions  $U_{R_1}$  et  $U_{R_2}$  aux bornes de  $R_1$  et  $R_2$ .