

Mathématiques: 2Bac SMA-SMB

Séance 10-1-1 : Structures algébriques - Partie 1 (Cours)

Professeur: Mr CHEDDADI Haitam

Sommaire

I- Loi de composition interne

- 1-1/ Introduction
- 1-2/ Définition d'une loi de composition interne
- 1-3/ Partie stable Loi induite

II- Propriétés d'une loi de composition interne

- 2-1/ Associativité Commutativité
- 2-2/ L'élément neutre
- 2-3/ Symétrique d'un élément
- 2-4/ Élément régulier d'une loi de composition interne

III- Morphismes

- 3-1/ Définition d'un morphisme
- 3-2/ Propriétés d'un morphisme

I- Loi de composition interne

1-1/ Introduction

L'ensemble des polynômes de degré inférieur ou égal à n Notation : \mathscr{P}_n ou $\mathbb{R}_n[X]$ $P \in \mathscr{P}_n \text{ signifie que } P \text{ est un polynôme de degré inférieur ou égal à } n$ $\left(\forall (P;Q) \in \mathscr{P}_n^2\right) \left(\forall x \in \mathbb{R}\right) \begin{cases} (P+Q)(x) = P(x) + Q(x) \\ (P \times Q)(x) = P(x) \times Q(x) \end{cases}$

Notation: $\mathcal{F}(I;\mathbb{R})$

 $\mathcal{F}(I;\mathbb{R}) = \{ f \mid f : I \to \mathbb{R} , x \mapsto f(x) \}$ $\left(\forall (f;g) \in \left(\mathcal{F}(I;\mathbb{R}) \right)^2 \right) \left(\forall x \in I \right) \begin{cases} (f+g)(x) = f(x) + g(x) \\ (f \times g)(x) = f(x) \times g(x) \end{cases}$

L'ensemble des fonctions définies sur un intervalle I à valeurs dans $\mathbb R$

L'ensemble des classes modulo n

Notation: $\mathbb{Z}/n\mathbb{Z}$

$$\mathbb{Z}/n\mathbb{Z} = \left\{ \overline{0}; \overline{1}; \overline{2}; ...; \overline{n} \right\}$$
Pour tous \overline{x} et \overline{y} de $\mathbb{Z}/n\mathbb{Z}$: $\overline{x} + \overline{y} = \overline{x + y}$ et $\overline{x} \times \overline{y} = \overline{x \times y}$

L'ensemble des parties d'un ensemble A

Notation: $\mathcal{P}(A)$

$$X \in \mathcal{P}(A) \Leftrightarrow X \subset A$$

Pour tous X et Y de $\mathcal{P}(A)$: $x \in X \cap Y \Leftrightarrow (x \in X \text{ et } x \in Y)$; $x \in X \cup Y \Leftrightarrow (x \in X \text{ ou } x \in Y)$ $x \in \overline{X} \Leftrightarrow (x \in A \text{ et } x \notin X)$; $x \in X - Y \Leftrightarrow (x \in X \text{ et } x \notin Y)$; $X \Delta Y = (X - Y) \cup (Y - X)$

L'ensemble des matrices carrées d'ordre 2

Notation: \mathbb{M} , (\mathbb{R})

$$\mathbb{M}_{2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & c \\ b & d \end{pmatrix} / (a;b;c;d) \in \mathbb{R}^{4} \right\}$$

On définit l'addition et la multiplication dans $\mathbb{M}_2(\mathbb{R})$ comme suit :

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} x & z \\ y & t \end{pmatrix} = \begin{pmatrix} a+x & c+z \\ b+y & d+t \end{pmatrix} \quad \text{ et } \quad \begin{pmatrix} a & c \\ b & d \end{pmatrix} \times \begin{pmatrix} x & z \\ y & t \end{pmatrix} = \begin{pmatrix} ax+cy & az+ct \\ bx+dy & bz+dt \end{pmatrix}$$

L'ensemble des matrices carrées d'ordre 3

Notation: $\mathbb{M}_3(\mathbb{R})$

$$\mathbb{M}_{3}\left(\mathbb{R}\right) = \left\{ \begin{pmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{pmatrix} \middle/ \left(a_{1}; a_{2}; a_{3}; b_{1}; b_{2}; b_{3}; c_{1}; c_{2}; c_{3}\right) \in \mathbb{R}^{9} \right\}$$

On définit l'addition et la multiplication dans \mathbb{M}_3 (\mathbb{R}) comme suit :

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} + \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} a_1 + x_1 & a_2 + x_2 & a_3 + x_3 \\ b_1 + y_1 & b_2 + y_2 & b_3 + y_3 \\ c_1 + z_1 & c_2 + z_2 & c_3 + z_3 \end{pmatrix}$$

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} a_1x_1 + a_2y_1 + a_3z_1 & a_1x_2 + a_2y_2 + a_3z_2 & a_1x_3 + a_2y_3 + a_3z_3 \\ b_1x_1 + b_2y_1 + b_3z_1 & b_1x_2 + b_2y_2 + b_3z_2 & b_1x_3 + b_2y_3 + b_3z_3 \\ c_1x_1 + c_2y_1 + c_3z_1 & c_1x_2 + c_2y_2 + c_3z_2 & c_1x_3 + c_2y_3 + c_3z_3 \end{pmatrix}$$

L'ensemble des transformations du plan

Notation: &

Toute application bijective de plan P vers P s'appelle une transformation du plan.

Les translations, les homothéties et les rotations font parties de l'ensemble des transformations ${\mathfrak T}$.

$$\left(\forall \left(f;g\right) \in \mathcal{T}^2\right) \left(\forall M \in \mathcal{P}\right) \ \left(fog\right) \left(M\right) = f\left(g\left(M\right)\right)$$

1-2/ Définition d'une loi de composition interne

Définition 1

On appelle loi de composition interne sur un ensemble E, toute application de $E \times E$ dans E.

Traditionnellement, on utilise la notation x * y pour désigner l'image d'un couple $(x;y) \in E \times E$ par une loi * plutôt qu'une notation fonctionnelle.

On note (E; *) un ensemble E muni d'une loi de composition interne « * ».

Applications

Pour tous x et y de $\mathbb{R}-\left\{rac{1}{2}
ight\}$, on pose : x*y=x+y-2xy.

1. Montrer que * est une loi de composition interne sur $\mathbb{R}-\left\{\frac{1}{2}\right\}$.

Sur l'intervalle I=]-1;1[, on définit la relation \perp par : $\left(orall \left(x;y
ight)\in I^2
ight) \; x\perp y=rac{x+y}{1+xy}$

2. La relation \perp est-elle une loi de composition interne sur I ? Justifier.

On considère l'ensemble $E=\{f_1,f_2,f_3,f_4\}$ où les fonctions $f_i\ (i\in\{1;2;3;4\})$ des fonctions numériques définies de \mathbb{R}^* vers \mathbb{R}^* par :

$$f_1:x\mapsto x\;\;;\;\;f_2:x\mapsto -x\;\;;\;\;f_3:x\mapsto rac{1}{x}\;\;;\;\;f_4:x\mapsto -rac{1}{x}$$

- 3. Dresser la table de $(E; \circ)$.
- 4. Montrer que \circ (composition des fonctions) est une loi de composition interne sur E.

1-3/ Partie stable - Loi induite

Définition 2

Soit (E; *) un ensemble muni d'une loi de composition interne et F une partie de E.

On dit que F est stable par * si : $\left(orall \left(x;y
ight) \in F^2
ight) \; x * y \in F$ La loi de composition interne alors définie sur F par $F^2 o F$

 $(x;y)\mapsto x*y$ est appelée loi induite par * sur F.

Applications

On considère l'ensemble $S=\left\{ x^{2}+y^{2}/\left(x;y\right) \in \mathbb{N}^{2}
ight\}$

- 1. Montrer que S est une partie stable de $(\mathbb{N}; \times)$.
- 2. L'ensemble S est-il stable pour l'addition dans $\mathbb N$? Justifier.

On considère les ensembles $A=\left\{ 3^{n} imes2^{m}/\left(n;m
ight)\in\mathbb{N}^{2}
ight\}$ et $B=\left\{ n^{2}/n\in\mathbb{N}
ight\}$

- 3. Étudier la stabilité de A pour l'addition et la multiplication dans $\mathbb{N}.$
- 4. Étudier la stabilité de B pour l'addition et la multiplication dans $\mathbb{N}.$

On considère l'ensemble
$$G = \left\{ egin{pmatrix} 1 & 0 & 0 \ a & 1 & 0 \ b & c & 1 \end{pmatrix} \middle/ (a;b;c) \in \mathbb{R}^3
ight\}$$

5. Montrer que G est une partie stable de $(\mathbb{M}_3(\mathbb{R}); \times)$

II- Propriétés d'une loi de composition interne

2-1/ Associativité - Commutativité

Définition 3

Soit (E; *) un ensemble muni d'une loi de composition interne.

On dit que la loi st est associative dans $(E; ^{st})$ si :

$$(\forall (a; b; c) \in E^3) \ \ (a * b) * c = a * (b * c)$$

On dit que la loi * est commutative dans $(E; {}^{st})$ si :

$$\left(orall \left(a;b
ight) \in E^{2}
ight) \,\,a*b=b*a$$

Remarques

La loi * n'est pas commutative dans $(E; ^*)$ signifie que :

$$ig(\exists\, (a;b)\in E^2ig)\,\,\,a\ ^*\,b
eq b\ ^*\,a$$

La loi st n'est pas associative dans (E;st) signifie que :

$$\left(\exists \left(a;b;c
ight) \in E^3
ight) \ \left(a*b\right)*c
eq a*\left(b*c
ight)$$

Si la loi * est associative dans $(E; ^{*})$, alors on peut supprimer les parenthèses et écrire :

$$(a * b) * c = a * (b * c) = a * b * c$$

Applications

Étudier la commutativité et l'associativité de la loi de composition interne T définie sur $E=\mathbb{Z}\times\mathbb{Z}$ par :

$$(a;b)T(x;y) = (ax;ay + bx)$$

2-2/ L'élément neutre

Définition 5

Soit (E; *) un ensemble muni d'une loi de composition interne.

Un élément e de (E; *) est dit neutre si : $(\forall x \in E) \ e \ * \ x = x \ * \ e = x$

Remarques

- Si la loi \ast est commutative dans $(E; \ast)$, alors une des relations de la définition 5 suffit.

On peut prendre alors soit $\ (\forall x \in E)\ e\ ^*\ x = x$, ou bien $\ (\forall x \in E)\ x\ ^*\ e = x$.

- Si S est une partie stable de (E; *), et si e est neutre dans (E; *), alors cela n'implique pas que e est neutre dans (S; *).

À titre d'exemple : Prenons $E=\mathbb{Z}/6\mathbb{Z}$ et $S=\left\{ar{0};ar{2};ar{4}
ight\}$

 $\overline{1}$ est neutre dans E et $\overline{4}$ est neutre dans S.

Applications

On munit l'ensemble $\mathbb Z$ d'une loi de composition interne * définie par :

$$\left(orall \left(x;y
ight) \in \mathbb{Z}^{2}
ight) \,x^{\,st}\,y=x+y-3$$

1. Montrer que $(\mathbb{Z}; *)$ admet un élément neutre.

On considère l'ensemble : $A=\left\{\left(egin{array}{cc}lpha&eta\\0&lpha
ight)/\left(lpha;eta
ight)\in\mathbb{R}^{2}
ight\}$

- 2. Montrer que imes est une loi de composition interne sur A.
- 3. Est-ce-que (A; imes) admet un élément neutre ? Justifier.

Proposition 1

Soit (E; *) un ensemble muni d'une loi de composition interne.

Si e et e' sont deux éléments neutres pour la loi * dans E, alors e=e'.

Autrement dit : un élément neutre pour une loi de composition interne, lorsqu'il existe, est unique.

2-3/ Symétrique d'un élément

Définition 6

Soit (E; *) un ensemble muni d'une loi de composition interne et possédant un élément neutre e.

Un élément $a\in E$ est dit symétrisable (ou inversible) pour * s'il existe un élément $a'\in E$ tel que a * a' = a' * a=e

Un tel élément a' (s'il existe) est appelé un symétrique (ou inverse) de a pour *.

Remarques

Si a' est un symétrique de a pour la loi \ast , alors a est un symétrique de a' pour la même loi.

Si la loi * est commutative, alors on peut se contenter de l'une des relations a*a'=e ou a'*a=e.

Si a' est un symétrique de a pour la loi *, on dit alors que a et a' sont symétriques dans (E; *).

Proposition 2

Soit (E; *) un ensemble muni d'une loi de composition interne associative et possédant un élément neutre e.

Si un élément $a \in E$ est symétrisable, alors, le symétrique de a est unique.

Remarques

Le symétrique d'un élément a se note :

- ullet a^{-1} pour une loi notée multiplicativement et s'appelle inverse de a.
- -a pour une loi notée additivement et s'appelle opposé de a.

Lorsque f est une bijection de E dans E, il n'y a donc pas ambiguïté dans la notation f^{-1} , il s'agit aussi bien de son application réciproque que de son inverse pour la loi \circ .

Proposition 3

Soit (E; *) un ensemble muni d'une loi de composition interne associative et possédant un élément neutre e.

Si a et b sont deux éléments symétrisables, alors a * b est aussi symétrisable et son symétrique est (a * b)' = b' * a', où a' et b' sont respectivement les symétriques de a et b.

Applications

On munit $\mathbb R$ d'une loi de composition interne définie comme suit :

$$\left(orall\left(x;y
ight)\in\mathbb{R}^{2}
ight)x^{*}y=x+y+rac{1}{2}xy$$

- 1. Montrer que la loi * est associative.
- 2. Montrer que * admet un élément neutre que l'on déterminera.
- 3. Déterminer les éléments symétrisables pour la loi *.
- 4. Montrer que le symétrique de -1 est 2, et que le symétrique de 6 est -3.

2-4/ Élément régulier d'une loi de composition interne

Définition 7

Soit (E; *) un ensemble muni d'une loi de composition interne.

Un élément $a \in E$ est dit régulier ou simplifiable si, et seulement si :

$$\left(orall\left(x;y
ight)\in E^{2}
ight) \; \left\{egin{array}{l} ast x=ast y\Rightarrow x=y \; 1 \ xst a=yst a\Rightarrow x=y \; 2 \end{array}
ight.$$

Remarque

Si la loi * est commutative dans E, alors l'une des implications 1 ou 2 suffit pour que l'élément a soit régulier dans $(E;^*)$..

Applications

On considère l'ensemble \mathbb{N}^* muni de la loi de composition interne définie par $a \wedge b = c$, où c est le plus grand commun diviseur des entiers a et b.

Est-ce-que tout élément de \mathbb{N}^* est régulier dans $(\mathbb{N}^*; \wedge)$? Justifier.

III- Morphismes

3-1/ Définition d'un morphisme

Définition 8

Soit (E;*) et (F;T) deux ensembles munis de lois de composition interne, et soit f une application de E dans F.

On dit que f est un morphisme de (E;st) dans (F;T) lorsque :

$$\left(orall\left(x;y
ight)\in E^{2}
ight)f\left(xst y
ight)=f\left(x
ight)Tf\left(y
ight)$$

Définition 9

Un morphisme s'appelle aussi un homomorphisme.

Un endomorphisme de (E; *) est un morphisme de (E; *) dans lui-même.

Un isomorphisme est un morphisme bijectif.

Un automorphisme est un endomorphisme bijectif.

Applications

Soit f_a l'application définie de \mathbb{R}^2 dans \mathbb{R}^2 par $\left(orall \left(x;y
ight)\in\mathbb{R}^2
ight)f_a\left(x;y
ight)=\left(ax;rac{y}{a}
ight)$ (où $a\in\mathbb{R}^*$)

1. Montrer que f_a est une application bijective.

Soit \mathscr{F} l'ensemble des applications f_a quand a varie sur \mathbb{R}^* .

- 2. Déterminer l'application $f_{a'}\circ f_a$ où $(a;a')\in (\mathbb{R}^*)^2.$
- 3. En déduire que la composition des applications \circ est une loi de composition interne sur \mathscr{F} .

On considère l'application :

$$h: \mathbb{R}^* o \mathscr{F} \ a \mapsto f_a$$

4. Montrer que h est un morphisme de $(\mathbb{R}^*; \times)$ dans $(\mathscr{F}; \circ)$.

3-2/ Propriétés d'un morphisme

Proposition 4

Soit f un morphisme de (E; *) dans (F; T).

- 1- $f\left(E\right)$ est une partie stable de $\left(F;T\right)$.
- 2- Si la loi * est associative dans $(E; ^*)$, alors la loi T est associative dans (f(E); T).
- 3- Si la loi * est commutative dans (E; *), alors la loi T est commutative dans (f(E); T).
- 4- Si la loi * admet un élément neutre e dans (E;*), alors f(e) est un élément neutre dans (f(E);T).
- 5- Si la loi * admet un élément neutre e dans (E;*), et un élément x admet un symétrique x' dans (E;*), alors f(x) admet un symétrique dans (f(E);T) qui est f(x').

Corollaire

Si f est un isomorphisme de (E; *) dans (F; T) (c'est-à-dire morphisme bijectif), alors f transfère les propriétés de la loi * dans (E; *) vers la loi T de (F; T), et va ainsi conserver toutes les propriétés liées à cette loi.

On exprime ce résultat en disant que (E; *) et (F; T) ont la même structure.