

Mathématiques: 2Bac SMA-SMB

Séance 7-2-2 : Calcul intégral - Partie 2 (Exercices)

Professeur: Mr CHEDDADI Haitam

Sommaire

VI- Exercices II

6-1/ Exercice 2-1

6-2/ Exercice 2-2

6-3/ Exercice 2-3

6-4/ Exercice 2-4

VI- Exercices II

6-1/ Exercice 2-1

On considère la fonction F définie sur $\mathbb R$ par : $F(x)=\int_x^{2x} rac{dt}{\sqrt{1+t^2+t^4}}$

- 1. Montrer que la fonction F est impaire.
- 2. Montrer que pour tout $x\in\mathbb{R}_{+}^{*}$, il existe $c\in\left[x;2x
 ight]$ tel que $F\left(x
 ight)=rac{x}{\sqrt{1+c^{2}+c^{4}}}.$
- 3. En déduire que $\left(orall x \in \mathbb{R}_{+}^{st}
 ight) 0 \leq F\left(x
 ight) \leq rac{1}{x}$, puis en déduire $\lim_{x o +\infty} F\left(x
 ight)$.
- 4. Calculer $F'\left(x
 ight)$ pour tout $x\in\mathbb{R}.$

6-2/ Exercice 2-2

Le plan est rapporté à un repère orthogonal $\left(O;\stackrel{
ightarrow}{i};\stackrel{
ightarrow}{j}
ight)$ avec $||\stackrel{
ightarrow}{i}||=2cm$ et $||\stackrel{
ightarrow}{j}||=4cm.$

1. Calculer l'aire du domaine délimité par les courbes des fonctions f et g définies sur $\left[e;e^2\right]$ par :

$$f(x) = \frac{x+1}{x \ln x}$$
 et $g(x) = \frac{1}{\ln x}$

6-3/ Exercice 2-3

ullet Calculer $\lim_{n o +\infty} u_n$ dans chacun des cas suivants :

$$egin{aligned} 1 \ u_n &= \sum_{k=1}^n rac{k^2}{n^2 \cdot \sqrt[3]{n^3 + k^3}} \ 2 \ u_n &= \sum_{k=0}^{n-1} rac{n+k}{n^2 + k^2} \ 3 \ u_n &= rac{1}{n} \sum_{k=1}^n rac{k^3}{\sqrt{(n^2 + k^2)^3}} \ 4 \ u_n &= rac{1}{n\sqrt{n}} \sum_{k=0}^{n-1} rac{k}{\sqrt{n+k}} \end{aligned}$$

6-4/ Exercice 2-4

Soit f la fonction numérique définie sur $[1;+\infty[$ par $:f(x)=e^{-\sqrt{x-1}}$

Soit \mathscr{C}_f sa courbe représentative dans un repère orthonormé $\left(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j}\right)$ avec :

$$||\overrightarrow{i}||=||\overrightarrow{j}||=2cm$$

On pose :
$$(\forall x \in]0;1])\ F\left(x
ight) = \int_{1}^{1+\left(\ln x
ight)^{2}}f\left(t
ight)\mathrm{d}\,t$$

- 1. Montrer que $(\forall x \in]0;1])$ $F'(x)=2\ln x$
- 2. Calculer F(x) pour tout $x \in]0;1]$.

Pour tout $\alpha \geq 1$, on note $S(\alpha)$ l'aire du domaine délimité par la courbe \mathscr{C}_f , l'axe des abscisses et les droites d'équations x=1 et $x=\alpha$.

- 3. Montrer que $S\left(lpha
 ight) = F\left(f\left(lpha
 ight)
 ight)$ (en unité d'aire)
- 4. Calculer $S\left(lpha
 ight)$ et $\lim_{lpha
 ightarrow +\infty} S\left(lpha
 ight)$