AlloSchool

Mathématiques: 1Bac S.Exp - STE - STM

Séance 2 (Généralités sur les fonctions)

Professeur: Mr ETTOUHAMY Abdelhak

Sommaire

I- Rappels

- 1-1/ Fonction numérique
- 1-2/ Fonction paire fonction impaire
- 1-3/ Monotonie d'une fonction numérique
- 1-4/ Taux d'accroissement d'une fonction f

II- Fonction majorée - Fonction minorée - Fonction bornée

- 2-1/ Définitions
- 2-2/ Extremums d'une fonction
- 2-3/ Fonction périodique

III- Comparaison de deux fonctions et interprétation géométrique

- 3-1/ Égalité de deux fonctions
- 3-2/ Comparaison de deux fonctions

IV- Composée de deux fonctions

- 4-1/ Vocabulaire
- 4-2/ Définition
- 4-3/ Monotonie de fonctions composées

V- Étude et représentation graphique de certaines fonctions

5-1/ Fonction
$$f(x)=ax^3 \ (a
eq 0)$$

5-2/ Fonction
$$f(x) = \sqrt{x+a}$$

VI- Exercices

- 6-1/ Exercice 1
- 6-2/ Exercice 2

- 6-3/ Exercice 3
- 6-4/ Exercice 4
- 6-5/ Exercice 5
- 6-6/ Exercice 6

I- Rappels

1-1/ Fonction numérique

Toute relation f qui associe chaque élément x au plus de $\mathbb R$ par un élément y de $\mathbb R$ est appelée fonction numérique de la variable réelle x.

On note
$$: f: \mathbb{R}
ightarrow \mathbb{R}$$
 $x \mapsto f(x)$

Tous les éléments x de qui ont images par f constituent un ensemble qu'on l'appelle ensemble de définition (ou encore domaine de définition), on le note \mathcal{D}_f ou D_f .

1-2/ Fonction paire - fonction impaire

f est une fonction numérique de la variable réelle x définie sur D_f .

$$f$$
 est paire sur $D_f \Leftrightarrow \left\{egin{array}{l} orall x \in D_f \ , \ -x \in D_f \ orall x \in D_f \ , \ f\left(-x
ight) = f\left(x
ight) \end{array}
ight.$

$$f$$
 est impaire sur $D_f \Leftrightarrow \left\{egin{array}{l} orall x \in D_f \ , \ -x \in D_f \ \ orall x \in D_f \ , \ f\left(-x
ight) = -f\left(x
ight) \end{array}
ight.$

1-3/ Monotonie d'une fonction numérique

définition:

f est une fonction numérique de la variable réelle x définie sur un intervalle I.

f est une fonction croissante sur $I\Leftrightarrow (orall x,x'\in I;x\leq x'\Rightarrow f\left(x
ight)\leq f\left(x'
ight))$

f est une fonction strictement croissante sur

$$I \Leftrightarrow (\forall x, x' \in I; x < x' \Rightarrow f(x) < f(x'))$$

f est une fonction décroissante sur $I\Leftrightarrow (orall x,x'\in I;x\leq x'\Rightarrow f\left(x
ight)\geq f\left(x'
ight))$

f est une fonction strictement décroissante sur

$$I \Leftrightarrow \left(orall x, x' \in I; x < x' \Rightarrow f\left(x
ight) > f\left(x'
ight)
ight)$$

f est une fonction constante sur $I\Leftrightarrow\left(orall x,x^{\prime}\in I;f\left(x
ight)=f\left(x^{\prime}
ight)
ight)$

1-4/ Taux d'accroissement d'une fonction f

Définition

f est une fonction numérique de la variable réelle x définie sur un intervalle I.

Soient $x,x'\in I$ tel que $x\neq x'$, le nombre $\frac{f(x)-f(x')}{x-x'}$ s'appelle le taux d'accroissement de la fonction f entre x et x', on le note T_f .

Propriétés

 T_f est le taux d'accroissement de la fonction f sur l'intervalle I.

Si $T_f \leq 0$ alors la fonction f est décroissante sur I.

Si $T_f < 0$ alors la fonction f est strictement décroissante sur I.

Si $T_f \geq 0$ alors la fonction f est décroissante sur I.

Si $T_f>0$ alors la fonction f est strictement décroissante sur I.

Si $T_f=0$ alors la fonction f est constante sur I.

II- Fonction majorée - Fonction minorée - Fonction bornée

2-1 Définitions

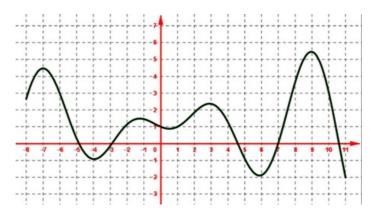
f est une fonction numérique de la variable réelle x définie sur $I\subset D_f.$ Soient $M,m\in\mathbb{R}$

La fonction f est majorée par M sur I si et seulement si $\forall x \in I \; ; \; f(x) \leq M.$ La fonction f est minorée par m sur I si et seulement si $\forall x \in I \; ; \; f(x) \geq m.$ La fonction f est bornée sur I si et seulement si f est majorée et minorée sur I.

Remarque

La fonction f est bornée sur $I\Leftrightarrow (\exists A\in\mathbb{R}^{+}\;,\; orall x\in I\;:\; |f\left(x
ight)|\leq A)$

Exemple



2-2/ Extremums d'une fonction

f est une fonction numérique de la variable réelle x définie sur D_f tel que $x_0 \in D_f$.

 $f\left(x_{0}
ight)$ est valeur maximale absolue de f si et seulement si $orall x\in D_{f}\,,\;f\left(x
ight)\leq f\left(x_{0}
ight).$

 $f\left(x_{0}
ight)$ est valeur minimale absolue de f si et seulement si $orall x\in D_{f}\ ,\ f\left(x
ight)\geq f\left(x_{0}
ight).$

2-3/ Fonction périodique

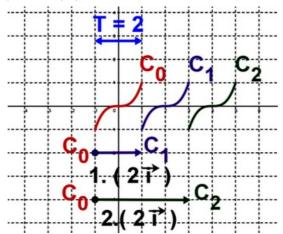
f est une fonction numérique de la variable réelle x définie sur D_f .

Soit $T \in \mathbb{R}^{+*}$

La fonction f est périodique sur D_f et son période est T si et seulement si :

$$\textcircled{1}\ x\in D_f\Rightarrow \big(x+T\in D_f\ et\ x-T\in D_f\big)$$

$$\textcircled{2} \ \forall x \in D_f \ : \ f\left(x+T\right) = f\left(x\right)$$



III- Comparaison de deux fonctions et interprétation géométrique

3-1/ Égalité de deux fonctions

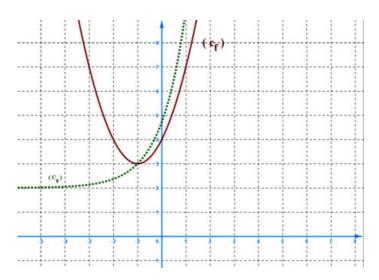
Soit f et g deux fonctions numériques dont les ensembles de définition sont respectivement Df et Dg.

On dit que f et g sont égales, et on note f = g, si $\left\{egin{aligned} D_f = D_g \\ f(x) = g(x) \end{aligned}
ight.$

3-2/ Comparaison de deux fonctions

Soient f et g deux fonctions définies sur I.

- $(f \leq g \text{ sur } I) \Leftrightarrow (\forall x \in I : f(x) \leq g(x))$. La courbe (\mathscr{C}_f) est située au dessous de la courbe (\mathscr{C}_g) sur I.
- $(f>g \operatorname{sur} I)\Leftrightarrow (\forall x\in I\ :\ f(x)>g(x))$. La courbe $\left(\mathscr{C}_f\right)$ est située strictement au dessus de la courbe $\left(\mathscr{C}_g\right)$ sur I.
- $(f=g \text{ sur } I) \Leftrightarrow (\forall x \in I : f(x)=g(x))$. La courbe $\left(\mathscr{C}_f\right)$ et la courbe $\left(\mathscr{C}_g\right)$ sont confondues sur I.
- f est une fonction positive sur D_f si et seulement si $orall x \in D_f: f(x) \geq 0$. La courbe $\left(\mathscr{C}_f\right)$ de f est située au dessus de l'axe des abscisses.
- f est une fonction strictement négative sur D_f si et seulement si . La courbe (\mathscr{C}_f) de f est située strictement au dessous de l'axe des abscisses.



IV- Composée de deux fonctions

4-1/ Vocabulaire

La fonction $h:x o h\left(x
ight)=g\left(f\left(x
ight)
ight)$, on la note par $h=g\circ f$, d'où : $h\left(x
ight)=g\circ f\left(x
ight)=g\left(f\left(x
ight)
ight)$.

La fonction $g \circ f$ est appelée la composée des fonction f et g dans cet ordre.

On peut faire le diagramme suivant pour $g\circ f$:

$$\mathbf{h} = g \circ \mathbf{f} : \mathbf{D}_{\mathbf{f}} \xrightarrow{\mathbf{f}} \mathbf{f} \left(\mathbf{D}_{\mathbf{f}} \right) \subset \mathbf{D}_{\mathbf{g}} \xrightarrow{\mathbf{g}} \mathbb{R}$$
$$\mathbf{x} \mapsto \mathbf{f}(\mathbf{x}) \in \mathbf{D}_{\mathbf{g}} \mapsto \mathbf{g}(\mathbf{f}(\mathbf{x})) = \mathbf{g} \circ \mathbf{f}(\mathbf{x}) = \mathbf{h} \left(\mathbf{x} \right)$$

4-2/ Définition

Soient f et g deux fonctions définies respectivement sur D_f et D_g et $f\left(D_f\right)\subset D_g$.

On pose $:D_{g\circ f}=\left\{ x\in\mathbb{R}/x\in D_{f}\ et\ f\left(x
ight) \in D_{g}
ight\} .$

La fonction h définie sur $D_{g\circ f}$ par $h\left(x\right)=g\left(f\left(x\right)\right)$ est appelée la composée des fonction f et g dans cet ordre.

On note $h = g \circ f$.

4-3/ Monotonie de fonctions composées

Soient f et g deux fonctions définies respectivement sur D_f et D_g et $f\left(D_f\right)\subset D_g.$

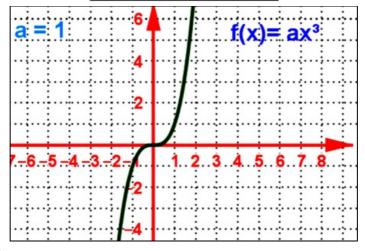
- Si f et g ont même monotonie (strictement monotone) respectivement sur D_f et $f\left(D_f\right)\subset D_g$, alors $g\circ f$ est croissante sur D_f ($g\circ f$ est strictement croissante sur D_f).
- Si f et g ont monotonie (strictement monotone) opposées respectivement sur D_f et $f\left(D_f\right)\subset D_g$, alors $g\circ f$ est décroissante sur D_f ($g\circ f$ est strictement décroissante sur D_f).

V- Étude et représentation graphique de certaines fonctions

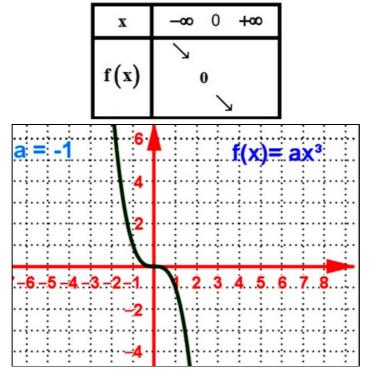
5-1/ Fonction
$$f(x)=ax^3 \ (a
eq 0)$$

ler cas (a>0)

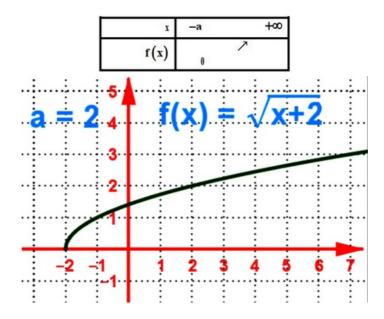
x	-8	0	+∞
f(x)	7	0	7



2nd cas $\left(a<0\right)$



5-2/ Fonction
$$f(x) = \sqrt{x+a}$$



VI- Exercices

6-1/ Exercice 1

1. Montrer que la fonction f est majorée par M dans chacune des cas suivantes :

a)
$$f(x)=-x^2+2x$$
 et $M=1.$

b)
$$f\!\left(x
ight)=rac{3x^2+2}{x^2+1}$$
 et $M=3$.

c)
$$f\!\left(x
ight)=rac{4}{x^2+2}$$
 et $M=2.$

2. Montrer que la fonction f est minorée par m dans chacune des cas suivantes :

a)
$$f(x)=x^2+4x$$
 et $m=-4$.

b)
$$f\!\left(x
ight) = \sqrt{x^2+1}$$
 et $m=1$.

3. Montrer que la fonction f est bornée par M et m dans chacune des cas suivantes :

a)
$$f\Big(x\Big)=rac{1}{x^2+1}$$
 et $M=0$ et $m=-1.$

b)
$$f\Big(x\Big)=\sin{(x)}+\sqrt{3}$$
 et $M=3$ et $m=0$.

6-2/ Exercice 2

Soit f la fonction définie par : $f\left(x
ight)=x^{2}+2x+3$

1. Montrer que f(-1) est le minimum de f sur $\mathbb R.$

Soit g la fonction définie par : $g\Big(x\Big) \;= rac{x^2+1}{x^2+x+1}$

- 2. Montrer que g(-1) est le maximum de g sur \mathbb{R} .
- 6-3/ Exercice 3

Soient f et g deux fonctions.

Déterminer $D_{g\circ f}$ l'ensemble de définition de la fonction $g\circ f$, et $D_{f\circ g}$ l'ensemble de définition de la fonction $f\circ g$, et déterminer les expressions $g\circ f(x)$ et $f\circ g(x)$, dans chacune des cas suivantes :

$$egin{aligned} 1 & f(x) = x^2 \; ; \; g(x) = x^3 \ 2 & f(x) = x^2 - 5 \; ; \; g(x) = rac{1}{x} \ 3 & f(x) = \sqrt{x} \; ; \; g(x) = x^2 \ 4 & f(x) = \sqrt{x - 8} \; ; \; g(x) = x^3 \end{aligned}$$

6-4/ Exercice 4

Déterminer les variations de la fonction f dans chacune des cas suivantes :

6-5/ Exercice 5

En utilisant la propriété de la monotonie de la composée de deux fonction, étudier la monotonie de la fonction f sur les intervalle I et J dans chacune des cas suivantes :

$$egin{array}{ll} 1 \;\; f(x) = \sqrt{x^2+1} \;\; ; \;\; I = \mathbb{R}^+ \;\; ; \;\; J = \mathbb{R}^- \ 2 \;\; f(x) = rac{1}{x^2+3} \;\; ; \;\; I = \mathbb{R}^+ \;\; ; \;\; J = \mathbb{R}^- \ 3 \;\; f(x) = \sin^2{(x)} \;\; ; \;\; I = \left[0;rac{\pi}{2}
ight] \;\; ; \;\; J = \left[rac{\pi}{2};\pi
ight] \end{array}$$

6-6/ Exercice 6

1. Représenter graphiquement la fonction f dans chacune des cas suivantes :

Soient f et g deux fonctions telles que $f\left(x\right)=\frac{4}{x^{3}}$ et $g\left(x\right)=\sqrt{x+2}$.

- 2. Représenter graphiquement f et g.
- 3. Résoudre graphiquement l'équation $f\left(x\right)=g\left(x\right)$.
- 4. Résoudre graphiquement l'équation $f\left(x\right) < g\left(x\right)$.
- 5. Vérifier algébriquement les solutions précédentes.