

Mathématiques: 2Bac SMA-SMB

Séance 3-2-1 : Dérivation et étude des fonctions - Partie 2 (Cours)

Professeur: Mr CHEDDADI Haitam

Sommaire

IV- Théorèmes de Rolle et des accroissements finis

- 4-1/ Théorèmes de Rolle
- 4-2/ Théorèmes des accroissements finis
- 4-3/ Inégalité des accroissements finis

IV- Théorèmes de Rolle et des accroissements finis

4-1/ Théorèmes de Rolle

Théorème 1

Soit a et b deux réels, avec a < b, et $f : [a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur [a,b], telle que f(a) = f(b).

Alors il existe au moins un réel $c \in]a,b[$ tel que f'(c)=0.

4-2/ Théorèmes des accroissements finis

Théorème 2

Soit a et b deux réels, avec a < b, et $f: [a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur [a,b].

Il existe alors au moins un réel $c\in]a,b[$ tel que $f\left(b
ight) -f\left(a
ight) =\left(b-a
ight) f^{\prime }\left(c
ight)$

4-3/ Inégalité des accroissements finis

Théorème 3

Soit a et b deux réels, avec a < b, et $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur]a,b[.

On suppose qu'il existe deux réels m et M tels que pour tout $x\in]a,b[:m\leq f'(x)\leq M$

Alors:
$$m(b-a) \le f(b) - f(a) \le M(b-a)$$

Corollaire

Soit a et b deux réels, avec a < b, et $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b], dérivable sur]a,b[.

On suppose qu'il existe $k\in\mathbb{R}^*$ tel que pour tout $x\in]a,b[:|f'(x)|\leq k$ Alors pour tout $(x,y)\in \left[a,b\right]^2$, on a $:|f(x)-f(y)|\leq k\,|x-y|$