\& AlloSchool

SVT (Tronc Commun Sciences)
Étude statistique de la répartition des organismes
Cours
Professeur : Mr BAHSINA Najib
\section*{Sommaire}

I- Étude statistique des végétaux
1-1/ Choix de la station
1-2/ Détermination de l'aire minimale
1-3/ Exploitation des données du relevé
II- Étude statistique des animaux
2-1/ Dénombrement des espèces animales
2-2/ Exploitation des données du relevé
2-3/ Exemple d'étude dans un milieu aquatique

I- Étude statistique des végétaux

1-1/ Choix de la station

- La station où on doit réaliser des relevés doit être situé loin de la limite séparant deux milieux différents.

- Donc les surfaces où on doit effectuer les relevés sont 1,2 et 3 , car ces stations sont homogènes, par contre les stations 4 et 5 sont hétérogènes.
- Vu la difficulté d'étudier tout l'espace d'une station, on recourt à la notion d'aire
minimale.

1-2/ Détermination de l'aire minimale

Pour délimiter la surface minimale des parcelles à étudier, on effectue un quadrillage.
Cela permet de dénombrer toutes les espèces végétales présentes sur $1 m^{2}$ puis sur $4 m^{2}, 9 m^{2}$, $16 m^{2}$ etc, jusqu'à ce que l'on ne trouve plus de nouvelles espèces végétales.

Le tableau suivant indique le nombre d'espèce recensées dans des carrées de $1 m^{2}, 4 m^{2}, \ldots$, $25 m^{2}$:

L'aire de relevé en m^{2}	1	4	9	16	25
Le nombre d'espèces végétales	11	38	59	71	71

Une fois ces relevés exécutés, on établit une courbe, où l'on porte, en fonction de la surface explorée, le nombre d'espèces trouvées :

1-3/ Exploitation des données du relevé

Abondance - dominance

L'abondance d'une espèce végétale représente le nombre d'individu de la même espèce par unité de surface.

La dominance ou recouvrement: représente la surface couverte par l'ensemble des individus d'une espèce donnée, elle est estimée par la projection verticale de leurs appareils végétatifs aériens sur le sol.

Le coefficient d'abondance-dominance a été créé par Braun-Blanquet, il met en évidence la relation entre les deux critères : abondance et dominance :

3

1

4

2

5

Coefficients	Abondance	Recouvrement
+	Très rare	Très faible
1	Rare	$<5 \%$
2	Répondue	Entre $5-25 \%$
3		Entre $25-50 \%$
4	Abondant	Entre $50-75 \%$
		$>75 \%$
5		

Fréquence et indice de fréquence

La fréquence (F) : est un pourcentage qui exprime le degré de la liaison d'une espèce vis-àvis au milieu,

Elle est représentée par la formule :

$$
F=\frac{n}{N} \times 100
$$

- n : Nombre de relevés renfermant l'espèce étudiée
- N : Nombre des relevés réalisés

Le chercheur DU RIETZ a divisé les fréquences en 5 classes, chacune correspond à un indice de fréquence et caractérise le type végétal :

Catégories	Indice de fréquence (IF)	Nature de l'espèce végétale
$\mathrm{F}<20 \%$	I	Accidentel
$20 \% \leq \mathrm{F}<40 \%$	II	Accessoire
$40 \% \leq \mathrm{F}<60 \%$	III	Assez fréquent
$60 \% \leq \mathrm{F}<80 \%$	IV	Fréquent
$80 \% \leq \mathrm{F} \leq 100 \%$	V	Très fréquent

Exemple d'étude dans un milieu forestier

Le tableau suivant représente les résultats de l'étude de végétaux (la flore) d'un milieu forestier
(Le signe + indique la présence de l'espèce dans le relevé) :

Les relevés	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	$\mathrm{~F}(\%)$	IF
Les espèces	+	-	-	+	+	-		
Fougère aigle	+	+						
Bouleau blanc	+	+	+	-	+	-		
Bouleau pubescent	-	+	+	+	+	-		
Châtaigner	-	-	+	+	+	+		
Chêne	+	-	+	+	-	-		
Saule	+	-	-	+	-	+		
Aulne	-	+	-	+	-	+		
Jonc	-	+	-	-	+	+		
Pin sylvestre	+	-	-	-	+	-		
Bruyère tétralix	-	-	-	-	+	-		
rumex	-	+	-	-	+	-		

Les relevés	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	\mathbf{R}_{4}	\mathbf{R}_{5}	\mathbf{R}_{6}	\mathbf{F} (\%)	IF
Les espèces	+	-	-	+	+	-	$(3 / 6) \times 100=50$	III
Fougère aigle	+	+	+	-	+	-	$(4 / 6) \times 100=66.66$	IV
Bouleau blanc	-	+	+	+	+	-	$(4 / 6) \times 100=66.66$	IV
Bouleau pubescent	-	-	+	+	+	+	$(4 / 6) \times 100=66.66$	IV
Châtaigner	+	-	+	+	-	-	$(3 / 6) \times 100=50$	III
Chêne	+	-	-	+	-	+	$(3 / 6) \times 100=50$	III
Saule	-	+	-	+	-	+	$(3 / 6) \times 100=50$	III
Aulne	-	+	-	-	+	+	$(3 / 6) \times 100=50$	III
Jonc	+	-	-	-	+	-	$(2 / 6) \times 100=33.33$	II
Pin sylvestre	-	-	-	-	+	-	$(1 / 6) \times 100=16.66$	I
Bruyère tétralix	-	+	-	-	+	-	$(2 / 6) \times 100=33.33$	II
rumex								

I- Étude statistique des végétaux

L'histogramme et la courbe de fréquence :

On constate que la courbe de fréquence est unimodale (une seule valeur maximal), donc les relevés étudiés appartiennent à un groupement végétal homogène.

II- Étude statistique des animaux

2-1/ Dénombrement des espèces animales

A cause de leur déplacement, il est relativement difficile de recenser les organismes animaux.
Ceci nécessite donc l'utilisation de plusieurs techniques adaptées:

- Observation et localisation
- Pour les oiseaux : observation avec des jumelles ; observation des nids ; étude du chant.
- Étude des traces : traces des pattes ; excréments ;
- Différentes techniques et matériel de capture....

Ainsi l'observation et l'inventaire des animaux, va permettre de rechercher leurs interactions avec leur milieu de vie.

2-2/ Exploitation des données du relevé

Après avoir réalisé des relevés, les résultats sont regroupés dans un tableau comme le cas des végétaux.
Pour l'exploitation des données, en plus de la fréquence et de l'indice de fréquence, on peut calculer les densités.

La densité absolue (D) :

$$
D=\frac{\text { Nombre total d'individu de l'espèce }}{\text { Surface totale ldes relevés effectués }}
$$

La densité relative (d) :

$$
\mathrm{d}=\frac{\text { Nombre total d'individu de l'espèce }}{\text { Nombre total d'individu de toutes les espèces }} \times 100
$$

II- Étude statistique des animaux

2-3/ Exemple d'étude dans un milieu aquatique

Le tableau ci-dessous représente le résultat des relevés des espèces animales (la faune) réalisés dans la station de l'oudaya à l'embouchure de l'oued bouregreg :

Espè̀ Relevés	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	\mathbf{R}_{4}	$\mathbf{R}_{\mathbf{5}}$	\mathbf{R}_{6}	Total	F (\%)	IF	$\mathrm{D} / \mathrm{m}^{2}$	\mathbf{d}	
1	Némertes				1							
2	Capitella capitata	1										
3	Diopatra neapolitana	1										
4	Glycera convoluta	1	1	2		1						
5	Mysta picta			1		3						
6	Nephthys homergii	3	1									
7	Nereis diversicolor		7	81	99	202	6					
8	Natica sp	4										
9	Ceratoderma edule	1	27	8	6	7						
10	Scrobicularia plana		156	213	214	138	1					
11	Tapes decussatus	3	39	47	11	9						
12	Nassarius peticulatus	9										
13	Carcinus moenas					2						

		R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	Total	F (\%)	IF	$\mathrm{D} / \mathrm{m}^{2}$	d
1	Némertes				1			1	16.66	I	0.66	0.07
2	Capitella capitata	1						1	16.66	I	0.66	0.07
3	Diopatra neapolitana	1						1	16.66	I	0.66	0.07
4	Glycera convoluta	1	1	2		1		5	66.66	IV	3.33	0.38
5	Mysta picta			1		3		4	33.33	II	2.66	0.30
6	Nephthys homergii	3	1					4	33.33	II	2.66	0.30
7	Nereis diversicolor		7	81	99	202	6	395	83.33	V	263.33	30.24
8	Natica sp	4						4	16.66	I	2.66	0.30
9	Ceratoderma edule	1	27	8	6	7		49	83.33	V	32.66	3.75
10	Scrobicularia plana		156	213	214	138	1	722	83.33	V	481.33	55.28
11	Tapes decussatus	3	39	47	11	9		109	83.33	V	72.66	8.34
12	Nassarius peticulatus	9						9	16.66	I	6	0.68
13	Carcinus moenas					2		2	16.66	I	1.33	0.15
	total	23	231	352	331	362	7	1306				

II- Étude statistique des animaux

L'histogramme et la courbe de fréquence

La courbe de fréquence est plurimodale, donc les relevés étudiés appartiennent à un groupement animal hétérogène.

