

Mathématiques: Tronc Commun

Séance 6 (La droite dans le plan)

Professeur: Mr ETTOUHAMY Abdelhak

Sommaire

I- Base d'un plan - Repère d'un plan - Coordonnées d'un point du plan

- 1-1/ Base d'un plan Repère d'un plan
- 1-2/ Coordonnées d'un point du plan
- 1-3/ Coordonnées de la somme de deux vecteurs -Coordonnées du produit d'un vecteur par un réel
- II- Déterminant de deux vecteurs
- III- Condition de colinéarité de deux vecteurs
- IV- Norme d'un vecteur Distance entre deux points
- V- Vecteur directeur d'une droite

VI- Représentation paramétrique et équation cartésienne d'une droite

- 6-1/ Représentation paramétrique d'une droite
- 6-2/ Équation cartésienne d'une droite
- 6-3/ Étude de l'ensemble des points

$$\{M(x,y)/ax + by + c = 0\}$$

VII- Droites parallèles dans le plan

IIX- Exercices

- 8-1/ Exercice 1
- 8-2/ Exercice 2
- 8-3/ Exercice 3
- 8-4/ Exercice 4

I- Base d'un plan - Repère d'un plan - Coordonnées d'un point du plan

1-1/ Base d'un plan - Repère d'un plan

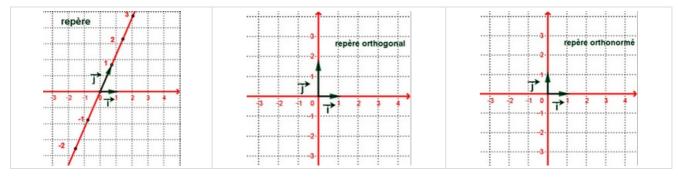
Définition

Soient O, I et J trois points non alignés du plan (P),

on pose
$$\overrightarrow{OI} = \overrightarrow{i}$$
 et $\overrightarrow{OJ} = \overrightarrow{j}$

- le triplet $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$ est appelé repère du plan (P)
- le point O est appelé l'origine du repère.
- Le couple $\left(\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$ est appelé une base du plan (P).
- la droite $\left(OI\right)$ s'appelle l'axe des abscisses.
- la droite (OJ) s'appelle l'axe des ordonnés.
- Si $(OI) \perp (OJ)$, alors le repère $\left(O,\stackrel{
 ightarrow}{i},\stackrel{
 ightarrow}{j}
 ight)$ est un repère orthogonal
- Si $(OI) \perp (OJ)$ et $\left|\left|\overrightarrow{i}\right|\right| = \left|\left|\overrightarrow{j}\right|\right| = 1$, alors le repère $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ est un repère orthonormé .

Exemples



1-2/ Coordonnées d'un point du plan

Le plan (P) est rapporté au repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

- Pour tout point M du plan (P), il existe un et un seul couple $(x,y)\in\mathbb{R}\times\mathbb{R}$ tel que $\overrightarrow{OM}=x\stackrel{\to}{i}+y\stackrel{\to}{j}$.

Le couple (x,y) est appelé couple des coordonnées du point M.

Le nombre x est appelé abscisse du point M.

Le nombre y est appelé ordonnée du point M.

Ot on écrit M(x,y) ou $M\begin{pmatrix} x \\ y \end{pmatrix}$.

- Pour tout vecteur \overrightarrow{u} du plan (P), il existe un seul couple $(x,y)\in\mathbb{R} imes\mathbb{R}$ tel que $\overrightarrow{u}=x\stackrel{\to}{i}+y\stackrel{\to}{j}$

Le couple (x,y) est appelé couple des coordonnées du vecteur \overrightarrow{u} .

Le nombre x est appelé abscisse du vecteur \overrightarrow{u} .

Le nombre y est appelé ordonnée du vecteur \overrightarrow{u} .

Ot on écrit
$$\overrightarrow{u}(x,y)$$
 ou $\overrightarrow{u}\begin{pmatrix}x\\y\end{pmatrix}$

1-3/ Coordonnées de la somme de deux vecteurs -Coordonnées du produit d'un vecteur par un réel

Le plan (P) est rapporté au repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont deux vecteurs de (P) .

 $A\left(x_A,y_A
ight)$ et $B\left(x_B,y_B
ight)$ et $I\left(x_I,y_I
ight)$ sont des points de (P) et $lpha\in\mathbb{R}$ On a :

- Le vecteur
$$\overrightarrow{u}+\overrightarrow{v}$$
 a pour coordonnées $\binom{x+x'}{y+y'}$. on note $\overrightarrow{u}+\overrightarrow{v}$ $(x+x',y+y')$.

- Le vecteur
$$\alpha\overrightarrow{u}$$
 a pour coordonnées $\binom{\alpha x}{\alpha y}$. on note $\alpha\overrightarrow{u}$ $(\alpha x, \alpha y)$.

- Le vecteur
$$\overrightarrow{AB}$$
 a pour coordonnées $\left(egin{array}{c} x_B - x_A \\ y_B - y_A \end{array}
ight)$, on note

$$\overrightarrow{AB}\left(x_{B}-x_{A},y_{B}-y_{A}
ight)$$

-
$$I\left(x_I,y_I
ight)$$
 est le milieu du segment $[AB]$, on a $x_I=rac{x_A+x_B}{2}$ et $y_I=rac{y_A+y_B}{2}$.

Exemple

II- Déterminant de deux vecteurs

Le plan (P) est rapporté au repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont deux vecteurs de (P) .

Le nombre xy'-x'y est appelé le déterminant des vecteurs \overrightarrow{u} et \overrightarrow{v} . On note :

$$det\left(\overrightarrow{u},\overrightarrow{v}
ight) = egin{vmatrix} x & x' \ y & y' \end{bmatrix} = xy' - yx'$$

III- Condition de colinéarité de deux vecteurs

$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix} \text{ sont deux vecteurs de } (P) \text{ rapport\'e au rep\`ere } \left(O, \overrightarrow{i}, \overrightarrow{j}\right).$$

$$\overrightarrow{u}$$
 et \overrightarrow{v} sont colinéaires équivaut à $det\left(\overrightarrow{u},\overrightarrow{v}
ight)=0\,\,(xy'-yx'=0)$

IV- Norme d'un vecteur - Distance entre deux points

Le plan (P) est rapporté au repère orthonormé $\left(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j}
ight)$.

$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 est un vecteur de (P) .

$$A\left(x_{A},y_{A}\right)$$
 et $B\left(x_{B},y_{B}\right)$ sont deux points de (P) .

On a:

La norme (ou la longueur) du vecteur \overrightarrow{u} est : $\left|\left|\overrightarrow{u}\right|\right| = \sqrt{x^2 + y^2}$

La distance entre A et B est : $AB = \sqrt{\left(x_B - x_A\right)^2 + \left(y_B - y_A\right)^2}$

V- Vecteur directeur d'une droite

Définition

Soit (D) une droite passant par A et B

Tout vecteur non nul \overrightarrow{u} et colinéaire avec le vecteur \overrightarrow{AB} est appelé vecteur directeur de la droite (D).

et on
$$\operatorname{note}:D\left(A,\overrightarrow{u}\right)$$
 ou $D\left(B,\overrightarrow{u}\right)$ ou $D\left(A,\overrightarrow{AB}\right)$.

Exemple

VI- Représentation paramétrique et équation cartésienne d'une droite

6-1/ Représentation paramétrique d'une droite

Définition

Soit $D\left(A,\overrightarrow{u}\right)$ une droite du plan (P) qui est rapporté au repère $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$ tel que $A\left(x_A,y_A\right)$ et $\overrightarrow{u}\left(a,b\right)$.

L'écriture $\left\{egin{aligned} x=x_A+at \ y=y_A+bt \end{aligned}
ight.$; $t\in\mathbb{R}$ est appelée représentation paramétrique de la droite $D\left(A,\overrightarrow{u}
ight)$.

Exemple

6-2/ Équation cartésienne d'une droite

Définition

Le plan (P) est rapporté à un repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

Toute droite $D\left(A\left(x_A,y_A\right);\overrightarrow{u}\right)$ du plan (P) a une équation de la forme ax+by+c=0 avec $c=x_Ay_u-x_uy_A$ et $\overrightarrow{u}\left(-b,a\right)$ vecteur directeur de la droite (D).

L'écriture ax+by+c=0 est appelée équation cartésienne de la droite (D) avec $\overrightarrow{u}(-b,a)$ vecteur directeur de la droite (D).

Exemple

6-3/ Étude de l'ensemble des points $\{M\left(x,y
ight)/ax+by+c=0\;;\;\left(a,b
ight)
eq\left(0,0
ight)\}$

Définition

Le plan (P) est rapporté à un repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

 $a,b,c\in\mathbb{R}$ avec (a,b)
eq (0,0).

l'ensemble des points $M\left(x,y\right)$ de (P) qui vérifient ax+by+c=0 est la droite passant par le point $C\left(0,-\frac{c}{b}\right)$ si $b\neq 0$ (ou $C'\left(-\frac{c}{a},0\right)$ si $a\neq 0$) et qui a $\overrightarrow{u}\left(-b,a\right)$ comme vecteur directeur.

Exemple

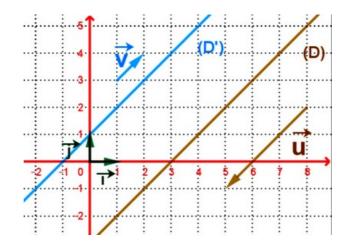
VII- Droites parallèles dans le plan

Propriété

Le plan (P) est rapporté à un repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

- (D) et (D') sont deux droites de (P) tel que $(D) \ : \ ax+by+c=0$ et
- (D'): a'x + b'y + c' = 0.
- $(D) \parallel (D')$ équivaut à ab' a'b = 0 ou $rac{a}{b} = rac{a'}{b'}.$
- (D) et (D') sont deux droites de (P) tel que (D) : y=mx+p et
- (D') : y = m'x + p'.
- $(D) \parallel (D')$ équivaut à m=m'.

Exemple



IIX- Exercices

8-1/ Exercice 1

On considère les points suivants : A(1;3), B(-1;2) et C(-2;-1).

- 1. Déterminer les coordonnées des vecteurs suivants : \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
- 2. Calculer les distances suivantes : AB, AC et BC.
- 3. Déterminer les coordonnées des vecteurs suivantes : $2\overrightarrow{AB}$ et $-3\overrightarrow{BC}$.
- 4. Déterminer les coordonnées des vecteurs suivantes $2\overrightarrow{AB} + (-3)\overrightarrow{BC}$ et $\overrightarrow{AB} + \overrightarrow{AC}$.
- 5. Déterminer les coordonnées du point I le milieu du segment [AB].

Soient $\overrightarrow{u}\left(3x+1;2\right)$ et $\overrightarrow{v}\left(4;y-3\right)$ deux vecteurs.

6. Déterminer x et y pour que $\overrightarrow{u} = \overrightarrow{v}$.

8-2/ Exercice 2

On considère les points A(3;2) et B(2;-1) et la droite (D) d'équation cartésienne (D):3x-y+6=0.

- 1. Montrer que $(AB) \parallel (D)$.
- 2. Donner une équation cartésienne de la droite (D') passant par A et dirigées par le vecteur $\overrightarrow{u}\left(4;-1\right)$.
- 3. Montrer que (D) et (D') sont sécantes en E(-1;3).

Soit F(a;0) un point du plan.

4. Déterminer le nombre a pour que le quadrilatère ABFE soit un parallélogramme.

8-3/ Exercice 3

Soient $\overrightarrow{u}\left(-1;2\right)$, $\overrightarrow{v}\left(-4;1\right)$ et $w\left(2m-3;2\right) / \ (m\in\mathbb{R})$ trois vecteurs du plan.

- 1. Étudier la colinéarité de \overrightarrow{u} et \overrightarrow{v} .
- 2. Déterminer la valeur du nombre m pour que \overrightarrow{u} et \overrightarrow{w} soient colinéaires.
- 3. Déterminer la valeur du nombre m pour que \overrightarrow{v} et \overrightarrow{w} soient colinéaires. On considère les points suivants : A(1;-8), B(11;7), C(5;-1) et D(7;2).
- 4. Montrer que \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- 5. Étudier l'alignement des points E, F , et G dans les cas suivants :
 - E(4; -2), F(5; 1) et G(11; 3).
 - ullet $E\left(-2;3\right)$, $F\left(0;-1\right)$ et $G\left(-1;1\right)$.

8-4/ Exercice 4

- 1. Étudier la position relative de (D) et (D') dans les cas suivants :
 - 1 (D): 6x 2y + 3 = 0 et $(D'): 2x \frac{1}{3}y 1 = 0$
 - $2\ (D): x+2y-3=0\ et\ (D'): -x-2y+4=0$
 - $3 (D): 5x 3y + 2 = 0 \ et (D'): 2x 3y 5 = 0$
 - 4 (D): -2x y + 2 = 0 et $(D'): \frac{1}{2}x y 7 = 0$