

الرياضيات أولى باك آداب وعلوم إنسانية

الحصة 2-1 (الحساب العددي والتناسبية – الدرس) الأستاذ: شدادي هيثم

الفهرس

|- التناسبية

1-1/ النسبة المنوية

1-2/ التناسب والتناسب العكسى

|- المعادلات والمتراجحات والنظمات

2-1/ حل معادلة من الدرجة الأول بمجهول واحد

2-2/ حل معادلة من الدرجة الثانية بمجهول واحد

2-2/ حل نظمة معادلتين من الدرجة الأول بمجهولين6

|- التناسبية

1-1/ النسبة المنوية

تعريف

mلتكن E مجموعة عدد عناصرها n، و A جزء من E عدد عناصره

 $p=rac{m}{n} imes 100$: النسبة المنوية التي تمثلها A في E هو العدد p الذي بحقق p^{0} الذي أرمز له بالرمز ونرمز له بالرمز الم

مثال

عدد تلاميذ مؤسسة تعليمية هو 2800 تلميذ وعدد الإناث هو 2100.

هي مجموعة التلاميذ في المؤسسة، والجزء A هو مجموعة الفتيات. E

 $p = rac{2100}{2800} imes 100 = 75$: النسبة المئوية التي تمثلها الفتيات هي

75% : يعني

1-2/ التناسب والتناسب العكسي

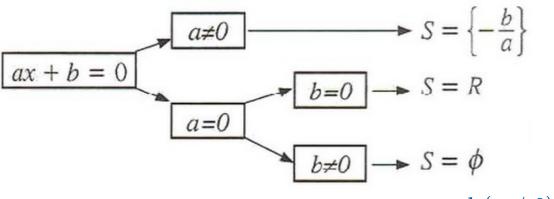
تعريف 1 (التناسب)

و d و c و d و أعداد غير منعدمة.

$$rac{a}{c}=rac{b}{d}$$
 : یکون a و d متناسبین مع

مثال

تعريف 2 (التناسب العكسي)


و d و c و b أعداد غير منعدمة.

$$ac=bd$$
 : يکون a و a متناسبين عکسيا مع c و d إذا کان d و d متناسبين عکسيا مع

مثال

|- المعادلات والمتراجحات والنظمات

2-1/ حل معادلة من الدرجة الأول بمجهول واحد

 $ax+b\;(a
eq0)$ إشارة

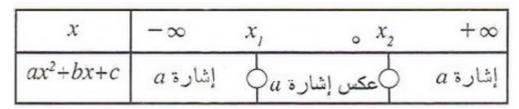
х	$-\infty$ $-\frac{b}{a}$	+∞
ax+b	a عكس إشارة	إشارة a

2-2/ حل معادلة من الدرجة الثانية بمجهول واحد

تسمى معادلة من الدرجة الثانية بمجهول واحد. $ax^2+bx+c=0~(a
eq 0)$

والعدد $\Delta = b^2 - 4ac$ یسمی ممیزها.

$$x_2=rac{-b-\sqrt{\Delta}}{2a}$$
 و $x_1=rac{-b+\sqrt{\Delta}}{2a}$: إذا كان $0>0$ ، إذن المعادلة تقبل حلين مختلفين هما


$$x_0=rac{-b}{2a}$$
 - إذا كان $\Delta=0$ ، إذن المعادلة تقبل حلا وحيدا هو - Δ

از کان
$$\Delta < 0$$
 إذن المعادلة لا تقبل أي حل في \mathbb{R} .

مثال

$$ax^2+bx+c=0\;(a
eq0)$$
 إشارة

 $\Delta>0$ اذا کان -

 $\Delta=0$ اذا کان -

\boldsymbol{x}	$-\infty$	x_o	+ ∞
ax^2+bx+c	a إشارة	\(\)	إشارة a

 $\Delta < 0$ اذا کان -

x	-∞	+∞
ax^2+bx+c	a اشارة	

2-2/ حل نظمة معادلتين من الدرجة الأول بمجهولين

: يمكن استعمال الخوارزمية التالية
$$\left\{ egin{aligned} ax+by=c\ a'x+b'y=c \end{aligned}
ight.$$
لحل النظمة

$$\Delta = egin{array}{c|c} a & b \ a^{,} & b^{,} \end{array}$$
: نحسب المحددة: 1

-2

 $\Delta \neq 0$ إذا كان $\Delta \neq 0$.

$$y=rac{\Delta y}{\Delta}$$
 النظمة تقبل حلا وحيدا (x,y) ، حيث $x=rac{\Delta x}{\Delta}$ النظمة تقبل حا

$$\Delta y = egin{array}{ccc} a & c \ a' & c' \end{array}$$
علما أن $x = egin{array}{ccc} c & b \ c' & b' \end{array}$ علما أن

 $\Delta=0$ إذا كان $\Delta=0$.

$$\Delta S = \emptyset$$
: أ- إذا كان $\Delta x
eq 0$ أو $\Delta y \neq 0$ أو

ب- إذا كان $\Delta x = \Delta y = 0$ ، فإن للنظمة ما لا نهاية له من الحلول، وتكون هذه الحلول مُحددة بإحدى المعادلتين.

مثال