

Mathématiques : 2Bac SPC-SVT-Agro-STE-STM

Examen National 2021 Session Rattrapage

Professeur: Mr CHEDDADI Haitam

Exercice 1 : Suites numériques (4 pts)

Soit (u_n) la suite numérique définie par $u_0 = \frac{1}{3}$ et $u_{n+1} = \frac{1+u_n}{3-u_n}$ pour tout n de \mathbb{N} .

1. Montrer que pour tout n de $\mathbb{N}: 0 < u_n < 1$

2)

- a. Montrer que pour tout n de \mathbb{N} : $u_{n+1} u_n = \frac{(u_n 1)^2}{3 u_n}$.
- b. Montrer que la suite (u_n) est convergente.
- 3) On pose $v_n = \frac{1}{1-u_n}$ pour tout n de \mathbb{N} .
 - a. Montrer que (v_n) est une suite arithmétique et déterminer sa raison et son premier terme.
 - b. Déterminer v_n en fonction de n et en déduire que $u_n = \frac{n+1}{n+3}$ pour tout n de \mathbb{N} .
 - c. Calculer la limite de la suite (u_n) .
 - 4. A partir de quelle valeur de n, a-t-on $u_n \ge \frac{1011}{1012}$?

Exercice 2: Nombres complexes (5 pts)

- 1. Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation $z^2-6z+13=0.$
- 2) Dans le plan complexe rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives a = 3 + 2i, b = 3 2i et c = -1 2i.
 - a. Écrire $\frac{c-b}{a-b}$ sous forme trigonométrique.
 - b. En déduire la nature du triangle ABC.
- 3) Soit R la rotation de centre B et d'angle $\frac{\pi}{2}$. Soit M un point du plan d'affixe z et le point M' d'affixe z' l'image de M par R, et soit D le point d'affixe d=-3-4i.
 - a. Écrire z' en fonction de z.
 - b. Vérifier que C est l'image de A par R.

4)

- a. Montrer que les points A, C et D sont alignés.
- b. Déterminer le rapport de l'homothétie h de centre C et qui transforme A en D.
- c. Déterminer l'affixe m du point E pour que le quadrilatère BCDE soit un parallélogramme.

- a. Montrer que $\frac{d-a}{m-b}$ est un nombre réel.
- b. En déduire que le quadrilatère ABED est un trapèze isocèle.

Exercice 3: Fonctions numériques (3 pts)

On considère la fonction numérique h définie sur $]0;+\infty[$ par $:h\left(x\right) =x+\ln x$

- 1. Montrer que la fonction h est strictement croissante sur $]0; +\infty[$.
- 2. Déterminer $h(0; +\infty[)$.

3)

- a. En déduire que l'équation h(x) = 0 admet une solution unique α sur $]0; +\infty[$.
- b. Montrer que $0 < \alpha < 1$.

4)

- a. Vérifier que $h\left(\frac{1}{\alpha}\right) = \alpha + \frac{1}{\alpha}$.
- b. En déduire que $h\left(\frac{1}{\alpha}\right) > 2$.

Problème : Étude de fonctions numériques et calcul intégral (8 pts)

Soit f la fonction numérique définie sur \mathbb{R} par $f(x) = 2 - xe^{-x+1}$.

Soit ($\mathscr C$) sa courbe représentative dans un repère orthonormé $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$ (unité : 1cm)

1. Calculer $\lim_{x\to +\infty} f(x)$ et interpréter le résultat géométriquement.

2)

- a. Calculer $\lim_{x \to -\infty} f(x)$.
- b. Montrer que $\lim_{x\to-\infty}\frac{f(x)}{x}=-\infty$ et interpréter le résultat géométriquement.

3)

- a. Montrer que pour tout x de \mathbb{R} : $f'(x) = (x-1)e^{-x+1}$
- b. Dresser le tableau de variations de la fonction f.

4)

- a. Calculer f " (x) pour tout x de \mathbb{R} .
- b. Montrer que la courbe (%) admet un point d'inflexion d'abscisse 2.
- 5. Construire la courbe ($\mathscr C$) dans le repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$ (On prend $f(2)\simeq 1,25$).
- 6. Déterminer la valeur minimale de la fonction f et en déduire que pour tout x de \mathbb{R} : $e^{x-1} \ge x$.

7)

- a. En utilisant une intégration par parties, calculer $\int_0^2 x e^{-x} dx$.
- b. En déduire que $\int_{0}^{2} f(x) dx = 4 e + 3e^{-1}$.
- 8) Soit g la restriction de f à l'intervalle $]-\infty;1]$.

- a. Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
- b. Construire la courbe représentative de g^{-1} dans le même repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.
- c. A partir de la courbe représentative de g^{-1} , déterminer $\lim_{x\to +\infty} \left(\frac{g^{-1}(x)}{x}\right)$.