

Mathématiques: 2Bac SPC-SVT-Agro-STE-STM

Examen National 2021 Session Normale

Professeur: Mr CHEDDADI Haitam

Exercice 1: Fonctions numériques (2 pts)

1)

- a. Résoudre dans $\mathbb R$ l'équation $e^{2x}-4e^x+3=0$
- b. Résoudre dans $\mathbb R$ l'inéquation $e^{2x}-4e^x+3\leq 0$
- c. Calculer $\lim_{x o 0} rac{e^{2x} 4e^x + 3}{e^{2x} 1}$
- 2. Montrer que l'équation $e^{2x}+e^x+4x=0$ admet une solution dans l'intervalle $\left[-1;0\right]$

Exercice 2 : Suites numériques (4 pts)

Soit (u_n) la suite numérique définie par $\left\{egin{align*} u_0=rac{1}{2} \ u_{n+1}=rac{u_n}{3-2u_n} \end{array}
ight.$ pour tout $n\in\mathbb{N}.$

- 1. Calculer u_1
- 2. Montrer par récurrence que pour tout $n\in\mathbb{N}$, $0\leq u_n\leqrac{1}{2}$

3)

- a. Montrer que pour tout $n\in\mathbb{N}$, $rac{u_{n+1}}{u_n}\leqrac{1}{2}$
- b. En déduire la monotonie de la suite (u_n)

4)

- a. Montrer que pour tout $n\in\mathbb{N}$, $0\leq u_n\leq \left(\frac{1}{2}\right)^{n+1}$; puis calculer la limite de la suite (u_n)
- b. On pose $v_{n}=\ln\left(3-2u_{n}
 ight)$ pour tout $n\in\mathbb{N}$, calculer $lim\left(v_{n}
 ight)$

5)

- a. Vérifier que pour tout $n\in\mathbb{N}$, $rac{1}{u_{n+1}}-1=3\left(rac{1}{u_n}-1
 ight)$
- b. En déduire u_n en fonction de n pour tout $n\in\mathbb{N}$.

Exercice 3: Nombres complexes (5 pts)

- 1. Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation $z^2-\sqrt{3}z+1=0.$
- 2) Soient les nombres complexes $a=e^{irac{\pi}{6}}$ et $b=rac{3}{2}+irac{\sqrt{3}}{2}.$

- a. Écrire a sous forme algébrique.
- b. Vérifier que $\overline{a}b=\sqrt{3}$.

Dans le plan complexe rapporté à un repère orthonormé direct $\left(O,\overrightarrow{u},\overrightarrow{v}\right)$, on considère les points A, B et C d'affixes respectives a, b et \overline{a} .

- 3. Montrer que le point B est l'image du point A par une homothétie h de centre O dont on déterminera le rapport.
- 4) Soient z l'affixe d'un point M du plan et z' l'affixe du point M' image de M par la rotation R de centre A et d'angle $\frac{\pi}{2}$.
- a. Écrire z' en fonction de z et a.
- b. Soit d l'affixe du point D image de C par la rotation R, montrer que d=a+1.
- c. Soit I le point d'affixe le nombre 1, montrer que ADIO est un losange.

5)

- a. Vérifier que $d-b=rac{\sqrt{3}-1}{2}\,(1-i)$; en déduire un argument du nombre d-b
- b. Écrire le nombre 1-b sous forme trigonométrique.
- c. Déduire une mesure de l'angle $(\overrightarrow{BI},\overrightarrow{BD})$.

Problème : Étude de fonctions numériques et calcul intégral (9 pts)

Soit la fonction f définie sur $[0;+\infty[$ par :f(0)=0 et $f(x)=2x\ln x-2x$ si x>0.

Soit (\mathscr{C}) sa courbe représentative dans un repère orthonormé $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$

(unité : 1cm)

1. Montrer que f est continue à droite au point 0.

2)

- a. Calculer $\lim_{x \to +\infty} f(x)$.
- b. Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter géométriquement le résultat.

3)

- a. Calculer $\lim_{x \to 0^+} \frac{f(x)}{x}$ et interpréter géométriquement le résultat.
- b. Calculer f'(x) pour tout x de $]0; +\infty[$.
- c. Dresser le tableau de variations de la fonction f sur $[0; +\infty[$.

- 4)
 - a. Résoudre dans l'intervalle $]0;+\infty[$ les équations f(x)=0 et f(x)=x.
- b. Construire la courbe (\mathscr{C}) dans le repère $\left(O,\stackrel{
 ightarrow}{i},\stackrel{
 ightarrow}{j}
 ight)$ (on prend $e^{rac{3}{2}}\simeq 4,5$)
- 5)
- a. En utilisant une intégration par parties, montrer que $\int_1^e x \ln x \,\mathrm{d}\, x = \frac{1+e^2}{4}$.
- b. En déduire $\int_1^e f(x) dx$.
- 6)
- a. Déterminer le minimum de f sur $]0;+\infty[.$
- b. En déduire que pour tout x de $]0;+\infty[$, on a $\ln x\geq rac{x-1}{x}.$
- 7) Soit g la restriction de la fonction f à l'intervalle $[1;+\infty[$.
- a. Montrer que la fonction g admet une fonction réciproque g^{-1} définie sur un intervalle J qu'on déterminera.
- b. Construire dans le même repère $\left(O,\stackrel{\to}{i},\stackrel{\to}{j}\right)$ la courbe représentative de la fonction $g^{-1}.$
- 8) on considère la fonction h définie sur $\mathbb R$ par $\left\{egin{align*} h\left(x
 ight) = x^3 + 3x \ \left(x \leq 0
 ight) \\ h\left(x
 ight) = 2x \ln x 2x \ \left(x > 0
 ight) \end{array}
 ight.$
- a. Étudier la continuité de h au point 0.
- b. Étudier la dérivabilité de la fonction h à gauche au point 0 puis interpréter géométriquement le résultat.
- c. La fonction h est-elle dérivable au point 0 ? Justifier.