

Sciences de la Vie et de la Terre 2Bac SPC

Examen National 2021 (Normale)

Professeur: Mr BAHSINA Najib

Partie 1: Restitution des connaissances (6 pts)

éfinissez : (1 pt)	1.
--------------------	----

Complexe actomyosine:

Sphère pédonculée :

- 3. Pour chacune des données suivantes, il y a une seule suggestion correcte : (2 pts)

A- La membrane externe des mitochondries est:

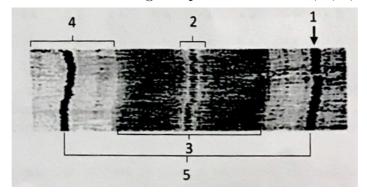
- 1. riche en protéines de la chaîne respiratoire.
- 2. semblable à la membrane plasmique.
- 3. repliée sous forme de crêtes.
- 4. riche en ATP-Synthase.

B- L'oxydation respiratoire d'une molécule d'acide pyruvique fournie :

- 1. 2 ATP.
- 2. 12ATP.
- 3. 15ATP.
- 4. 36ATP.

C- Dans une cellule de muscle squelettique striée, les ions du calcium :

- 1. se fixent sur les têtes de myosine lors de la contraction.
- 2. permettent la liaison des filaments d'actine entre eux.
- 3. permettent la liaison des filaments de myosine entre eux.
- 4. sont stockés dans le réticulum sarcoplasmique à la fin de la contraction.


D- La respiration cellulaire se déroule selon la succession des étapes suivantes :

- 1. La glycolyse \to cycle de Krebs \to formation de l'acétyle CoA \to phosphorylation oxydative.
- 2. La glycolyse \to formation de l'acétyle CoA \to cycle de Krebs \to phosphorylation oxydative.
- 3. La glycolyse \rightarrow formation de l'acétyle CoA \rightarrow phosphorylation oxydative \rightarrow cycle de Krebs.
- 4. La glycolyse \rightarrow cycle de Krebs \rightarrow phosphorylation oxydative \rightarrow formation de l'acétyle CoA.

Partie 1 : Restitution des connaissances (5 pts)

Le document suivant montre une observation microscopique d'une partie de la myofibrille.

4. Nommez chacune des structures désignées par les numéros 1, 2, 3, 4 et 5. (1.25 pt)

5. Reliez chaque numéro du groupe l à la lettre lui correspondant du groupe 2. (1 pt)

Groupe 1	Groupe 2
 La chaleur retardée La chaleur initiale La formation du gradient H⁺ La production du dioxyde 	 a. réactions d'oxydo-réduction du cycle de Krebs. b. réactions d'oxydo-réduction au niveau de la chaîne respiratoire. c. synthèse d'ATP à partir des réactions
de carbone	 d. synthèse d'ATP à partir des reactions métaboliques aérobiques. d. synthèse d'ATP à partir de la phosphocréatine.

Partie II : Raisonnement scientifique et communication écrite et graphique (14 points)

Exercice 1 (4 pts)

Pour étudier le mode de transmission des caractères héréditaires chez le poulet, on propose les données suivantes :

Le document 1 présente le caryotype chez le poulet de la race Coucou de malines :

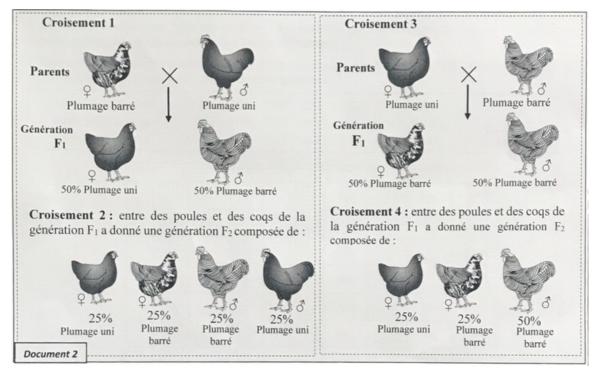
- la figure (a) présente le caryoty pe de la poule
- la figure (b) présente le caryotype du coq :

			Figur	e a			1	
*	11	11	11	11	11		Z w	
1	2	3	4	5	6	7	8	
9	10	11	12	13	14	15	16	
17	18	19	20	21	22	23	24	
25	26	27	28	29	30	31	32	
33	34	35	36	37	38			
			Figu	re b				
			L					1
11	11	11	11	11			z z	
}	11	11	11	11	11 6	***	Z Z	
1 9	## 10	3	4	••		••	8	
9	10	11	12	13	14	15	8	
44	10	11	4	13	14	••	8	

1. Comparez les deux caryotypes du document 1 et donnez la formule chromosomique de la poule et du coq. (1.5 pts)

Partie II : Raisonnement scientifique et communication écrite et graphique (14 points)

Exercice 1 (4 pts)


Chez le poulet de race Coucou de Malines, le plumage est soit uni (de couleur noir homogène) ou barrée (rayé noir et blanc).

On suppose que chez cette race, le caractère du plumage barré est gouverné par un seul couple d'allèles localisé sur un autosome.

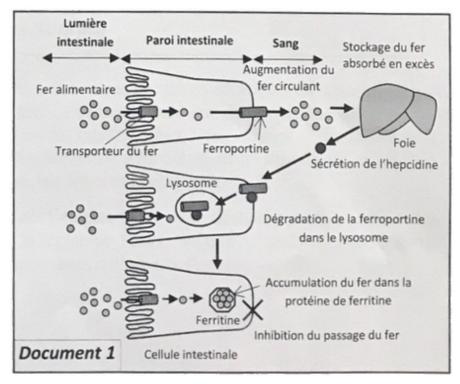
Pour vérifier cette hypothèse, on effectue une série de croisements :

- les croisements 1 et 3 entre poules et coqs de lignées pures qui différent par leur plumage
- les croisements 2 et 4 entre poules et coqs de F_1 .

Le document 2 donne les résultats de ces croisements :

2. En exploitant les données précédentes, vérifiez l'hypothèse proposée. Votre réponse doit inclure le mode de transmission du caractère étudié, ainsi que l'interprétation chromosomique des résultats des croisements 1, 2, 3 et 4 à l'aide d'échiquier de croisement. (2.5 pts)

(Utiliser les symboles B ou b pour le plumage barré et N ou n pour le plumage uni)


Partie II : Raisonnement scientifique et communication écrite et graphique (14 points)

Exercice 2 (4 pts)

Afin de déterminer la relation gène caractère, on propose l'étude de l'hémochromatose, une maladie héréditaire, qui entraı̂ne chez l'Homme une accumulation progressive du fer dans le foie, le pancréas et le cœur.

Le fer est un minéral essentiel, impliqué dans de nombreuses réactions métaboliques, mais il devient toxique lorsque sa concentration dépasse les valeurs normales. Les stocks de fer sont strictement adaptés aux besoins de l'organisme. Cette régulation se fait sous l'effet de l'hepcidine, une protéine secrétée par le foie, au niveau des cellules intestinales (entérocytes) où s'effectue l'absorption du fer alimentaire.

Le document 1 montre les éléments qui interviennent dans cette régulation :

1. À partir du document 1, décrivez le mécanisme de régulation des stocks de fer au niveau de l'organisme et déduisez l'effet de l'hepcidine. (1 pt)

Partie II : Raisonnement scientifique et communication écrite et graphique (14 points)

Exercice 2 (4 pts)

La synthèse hépatique de l'hepcidine est déclenchée par la protéine HFE. Cette protéine est codée par le gène HFE localisé sur le chromosome 6. Ce gène existe sous deux formes alléliques :

- L'allèle HFE sauvage codant pour une protéine HFE normale qui permet la synthèse normale de l' hepcidine chez une personne saine.
- L'allèle HFE muté codant pour une protéine HFE anormale qui induit la perturbation de la synthèse de l'hepcidine chez une personne atteinte de l'hémochromatose.

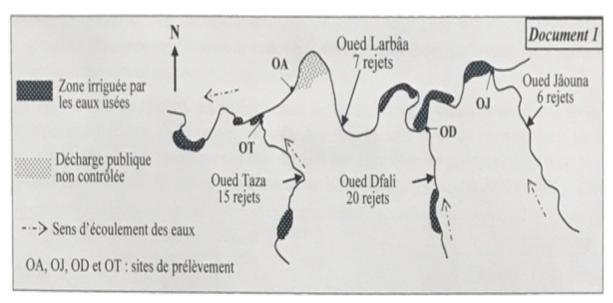
Le document 2 présente les séquences nucléotidiques codantes des deux allèles HFE (brin non transcrit de l'ADN) :

Numéro du triplet :	278	279	280	281	282	283	284	
Allèle HFE sauvage:	CAG	AGA	TAT	ACG	TGC	CAG	GTG	
Allèle HFE muté	CAG	AGA	TAT	ACG	TAC	CAG	GTG	Document .

Le document 3 donne le tableau du code génétique :

		U		C			A	(G	
		UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	U
	U	UUC	THE	UCC		UAC		UGC		C
		UUA	Leu	UCA		UAA	STOP	UGA	STOP	A
		UUG	Leu	UCG		UAG		UGG	Trp	G
		CUU		CCU		CAU	His	CGU		U
	C	CUC	Leu	CCC	Pro	CAC	HIS	CGC	Arg	C
		CUA		CCA		CAA	Gln	CGA		A
		CUG		CCG		CAG		CGG		G
		AUU	Ile	ACU	Thr	AAU	Asn	AGU	Ser	U
	A	AUC		ACC		AAC		AGC		C
	^	AUA		ACA		AAA		AGA		A
		AUG	Met	ACG		AAG	Lys	AGG	Arg	G
		GUU		GCU		GAU	Ac.asp	GGU		U
	G	GUC	Val	GCC	Ala	GAC		GGC	Gly	C
	0	GUA	vai	GCA	Ala	GAA	Ac.glu	GGA	Gly	A
ocument 3		GUG		GCG		GAG	Ac.giu	GGG		G

- 2. En vous basant sur les documents 2 et 3, déterminez la séquence d'acides aminés de la protéine HFE correspondante à l'allèle HFE sauvage et à l'allèle HFE muté. (1 pt)
- 3. En vous basant sur les données précédentes, expliquez l'origine de l'hémochromatose en précisant la relation gène caractère. (2 pts)

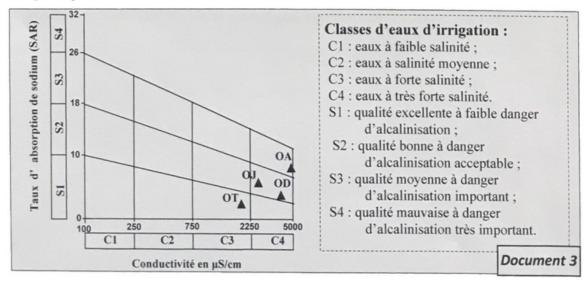

Partie II : Raisonnement scientifique et communication écrite et graphique (14 points)

Exercice 3 (6 pts)

La région de Taza, située au nord-est du Maroc, a connu durant ces dernières décennies un développement agricole important et une poussée démographique notable. La décharge publique de la ville de Taza n'est pas contrôlée, et les eaux usées sont rejetées directement dans les oueds Larbâa, Dfali, Jâouna et Taza. Ces eaux sont utilisées dans l'irrigation des cultures maraîchères avoisinantes.

Afin d évaluer les impacts de ces déchets sur l'environnement, l'agriculture et la santé, on propose les données suivantes :

Le document 1 présente une carte simplifiée montrant l'emplacement de la décharge publique, des rejets des eaux usées et des zones irriguées par ces eaux dans la région de Taza, ainsi que la localisation des sites de prélèvement (OA, OJ, OD et OT) au niveau des différents oueds collecteurs des eaux usées :



Des analyses physico-chimiques et microbiologiques des eaux d'irrigation provenant des oueds collecteurs des eaux usées de la ville de Taza (document 1) ont été réalisées en 2012. Le tableau du document 2 résume les résultats obtenus :

Paramètres	OJ (oued Jâouna)	OD (oued Dfali)	OA (oued Larbâa)	OT (oued Taza)	Norme *
Conductivité (µS/cm)	2800	4000	5873	1200	800
DBO5 (mg O ₂ /L)	800 - 1300	800 - 1300	1300 - 1800	400 - 800	8
Fer: Fe (mg/L)	4		70	22	5
Coliformes fécaux (germes/100mL)	5300	7500	75.10 ⁷	1600	1000

Le diagramme de Wilcox classe les eaux d'irrigation à partir de leur pouvoir alcalinisant (Le taux d'absorption du sodium ou SAR) en fonction de leur conductivité électrique.

Le document 3 donne le diagramme de Wilcox des différents sites de prélèvement des affluents qui reçoivent les eaux usées de la ville de Taza :

1. a- En exploitant les documents 1 et 2, comparez les paramètres des eaux des oueds

collecteurs des usées de la ville de Taza par rapport aux normes. (1.5 pt)

- 1. b- En exploitant le document 3, déterminez la classe des eaux d'irrigations provenant des différents oueds de la ville de Taza. (1 pt)
- 1. c- Expliquez la qualité des eaux au niveau du site OA. (1 pt)

Partie II : Raisonnement scientifique et communication écrite et graphique (14 points)

Exercice 3 (6 pts)

Au voisinage de la ville de Taza, certains agriculteurs utilisent les eaux usées pour irriguer leurs cultures de plantes potagères. Pour montrer l'impact de cette utilisation des eaux usées sur le rendement agricole et la santé des consommateurs on propose les données suivantes :

Le document 4 donne les résultats des études portant sur :

- le rendement de certaines cultures selon les eaux d'irrigation utilisées (figure a),
- le dosage des métaux lourds et deux types de bactéries dans les parties consommables de la laitue irriguées par des eaux usées et une autre irriguées par des eaux du barrage (figure b)
- l'état de lieu sur les maladies hydriques dans la province de Taza entre 2001 et 2005 (figure c) :

Irriguée par Cultures	Eau Eau de usée barrage + engrais		Dut de	Figure b	Laitue irriguée par		
			pluie		Eau usée	Eau de barrage	
		engrais		Plombe en μg/g	0.3	0.1	
Blé tendre	57	53	8	Fer en μg/g	5.8	1.2	
Luzerne Les valeurs en quin	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Figure a	Coliformes fécaux (germes/g)	3.22 10 ⁴	67	
			Tree at	Bactéries clostridiums intestinale (germes/g)	2.84 10 ³	0	
naladies à transport gglomérations parti	t hydric ellemen	que, principa nt assainies. E	lement la t En plus ; l'ir	de 2001 - 2005, parmi les rég yphoïde et l'hépatite A, toucl rigation des cultures maraîchère dissémination de ces maladies.	nant particulière es par les eaux u	ement les grande	

- 2. a- En utilisant les figures du document 4, montrez l'effet de l'utilisation des eaux usées sur le rendement et la qualité des cultures. (1.5 pt)
- 2. b- En utilisant les figures du document 4, expliquez le risque en matière de maladies à transport hydrique relevé à Taza. (0.5 pt)
- 3. En se basant sur vos réponses précédentes et vos acquis, proposez deux solutions adéquates pour faire face au problème soulevé dans la ville de Taza durant la période 2001-2005. (0.5 pt)