AlloSchool

Mathématiques: 2Bac SPC-SVT-Agro-STE-STM

Séance 17 (Probabilités)

Professeur: Mr CHEDDADI Haitam

Sommaire

I- Terminologie

- 1-1/ Expérience aléatoire
- 1-2/ Univers
- 1-3/ Éventualité
- 1-4/ Évènement

II- Probabilité sur Ω l'univers d'une expérience aléatoire

- 2-1/ Probabilité d'un cas possible à être réalisé
- 2-2/ Probabilité sur un univers fini (un ensemble fini)
- 2-3/ Hypothèse d'équiprobabilité
- III- Probabilité conditionnelle Deux événements indépendants Probabilités composées
- 3-1/ Probabilité conditionnelle Deux événements indépendants
- 3-2/ Probabilité totale
- IV- Expérience répétée plusieurs fois
- V- Variables aléatoire loi de probabilité espérance mathématique variance écart-type
- 5-1/ Variables aléatoire
- 5-2/ Loi de probabilité d'une variable aléatoire X
- 5-3/ Espérance mathématique variance écart-type d'une variable aléatoire \boldsymbol{X}
- VI- Loi binomiale ou distribution binomiale
- VII- Exercices
- 7-1/ Exercice 1

- 7-2/ Exercice 2
- 7-3/ Exercice 3
- 7-4/ Exercice 4
- 7-5/ Exercice 5
- 7-6/ Exercice 6

I- Terminologie

1-1/ Expérience aléatoire

Toute expérience dont ses résultats sont connus mais on ne pas donner le résultat de l'expérience avant de réaliser l'expérience ; on l'appelle expérience aléatoire.

Les résultats obtenues par cette expérience aléatoire on les note par ω_1 puis ω_2 puis ω_3 ω_n (en général ω_i avec $i\in\{1,2,\ldots,n\}$).

Exemple

1-2/ Éventualité

Chaque ω_i s'appelle une éventualité ou un événement élémentaire.

Par exemple, lorsqu'on obtient 1, on dit que $\omega_1=1$ est une éventualité ou cas possible.

1-3/ Univers

Les éventualités (ou les événements élémentaires) constituent un ensemble qui s'appelle univers.

Il est noté $\Omega(\omega_1,\omega_2,\ldots,\omega_n)$.

1-4/ Évènement

Toute partie A de Ω s'appelle événement.

Par exemple, $A=\{PP,FF\}\subset \Omega$, donc $A=\{PP,FF\}$ est un évènement.

On peut exprimer un évènement par une phrase : $A=\{PP,FF\}$ les deux lancements de dé donnent le même résultat

Si $A=\varOmega$ alors l'évènement \varOmega s'appelle événement certain.

Si $A=\emptyset$ alors l'évènement \emptyset s'appelle événement impossible.

Si $A=\{\omega_i\}$ alors l'évènement $\{\omega_i\}$ s'appelle événement élémentaire.

Si $A\cap B=\emptyset$ on dit que A et B sont deux événements incompatibles .

Si $A\cap B=\emptyset$ et $A\cup \underline{B}=\Omega$ alors B s'appelle l'événement contraire de A (et vis versa), on note $B=\overline{A}$ (de même $A=\overline{B}$).

L'événement $A\cap B$ est l'ensemble constitué par des éventualités réalisées à la fois par les événements A et B.

L'événement $A \cup B$ est l'ensemble constitués par des éventualités réalisées soit par l'événement A ou par l'événement B.

Les événements A_1 et A_2 et A_p est une partition de Ω s'ils sont disjoints deux à deux et $A_1 \cup A_2 \cup \ldots \cup A_p = \Omega$.

II- Probabilité sur Ω l'univers d'une expérience aléatoire

2-1/ Probabilité d'un cas possible à être réalisé

On lance dans l'air une pièce de monnaie 2 fois successives (si le 1er lancer donne P et le 2ème lancer donne F, cette éventualité (ou cas possible) sera notée PF.

Cette expérience est répétée 1000 fois, on obtient les résultats suivants :

Cas possibles (événement élémentaire)	FF	FP	PF	PP
Nombres de cas	240	260	270	230

- Quel est l'événement élémentaire qui a une grande chance d'être réalisé ?
- Quel est l'événement élémentaire qui a une faible chance d'être réalisé ?

2-2/ Probabilité sur un univers fini (un ensemble fini)

Définition

Soit $\Omega=(\omega_1,\omega_2,\ldots,\omega_n)$ l'univers des éventualités d'une expérience aléatoire. Lorsqu'on répète une expérience aléatoire N fois dans les mêmes conditions, si n_i est le nombre de fois on a obtenu ω_i , Le nombre $\frac{n_i}{N}$ s'appelle la probabilité de l'événement élémentaire $\{\omega_i\}$, on note $p_i=p\left(\{\omega_i\}\right)=\frac{n_i}{N}$, et on a $p_1+p_2+p_3+\ldots+p_n=1$.

La probabilité d'un événement A est la somme des probabilités des événements élémentaires qui constituent A, on note p(A) (exemple : $\Omega=\{\omega_1,\omega_3,\omega_6\}$ donc $p(A)=p\left(\{\omega_1\}\right)+p\left(\{\omega_3\}\right)+p\left(\{\omega_6\}\right)$)

Exemple

Propriété

A et B sont deux événements d'un univers \varOmega d'une expérience aléatoire.

$$egin{aligned} orall A \in \Omega \ ; \ 0 \leq p\left(A
ight) \leq 1 \ p\left(\Omega
ight) = 1 \ p\left(\emptyset
ight) = 0 \ p\left(A \cup B
ight) = p\left(A
ight) + p\left(B
ight) - p\left(A \cap B
ight) \ p\left(\overline{A}
ight) = 1 - p\left(A
ight) \end{aligned}$$

2-3/ Hypothèse d'équiprobabilité

Si dans une expérience aléatoire (dont l'univers est Ω), tous les événements élémentaires $A=\{\omega_i\}$ ont la même probabilité (c.à.d.

 $p\left(\{\omega_1\}\right)=p\left(\{\omega_2\}\right)=\ldots=p\left(\{\omega_n\}\right)$), alors la probabilité d'un évènement A de Ω est $p\left(A
ight)=rac{cardA}{card\Omega}$.

Remarque

L'équiprobabilité est exprimé par les expressions suivants :

- Des boules indiscernables aux touché.
- On lance un dé (ou une pièce de monnaie) au hasard.

III- Probabilité conditionnelle – Deux événements indépendants - Probabilités composées

3-1/ Probabilité conditionnelle - Deux événements indépendants

Définition

A et B sont deux événements d'un univers Ω d'une expérience aléatoire.

La probabilité de l'événement B sachons que l'événement A est réalisé est $\frac{p(A\cap B)}{p(A)}$, on la note par $p_A\left(B\right)$ ou par $p\left(B/A\right)$.

A et B sont deux événements indépendants si $p\left(A\cap B\right)=p\left(A\right) imes p\left(B\right)$ ou $p_{A}\left(B\right)=p\left(B\right).$

 $p\left(A\right)\neq0$ et $p\left(B\right)\neq0$, l'écriture $p\left(A\cap B\right)=p\left(A\right)$. $p_{A}\left(B\right)=p\left(B\right)$. $p_{B}\left(A\right)$ s'appelle la formule de probabilité composée.

Exemple

3-2/ Probabilité totale

Définition

 A_1 , A_2 , A_3 ,....et A_n sont des événements d'un univers Ω d'une expérience aléatoire qui forment une partition de Ω .

 A_1 , A_2 , A_3 ,....et A_n sont disjoints 2 à 2 et $A_1 \cup A_2 \cup A_3 \cup \ldots A_n = \Omega$.

La probabilité d'un événement B de Ω est :

$$p\left(B
ight)=p\left(A_{1}
ight)p_{A_{1}}\left(B
ight)+p\left(A_{2}
ight)p_{A_{2}}\left(B
ight)+\ldots+p\left(A_{n}
ight)p_{A_{n}}\left(B
ight)$$

IV- Expérience répétée plusieurs fois

Propriété

Soit p=p(A) la probabilité d'un événement A d'un univers Ω d'une expérience aléatoire.

Soit l'événement C « l'événement A était réalisé k fois après avoir répété cette expérience aléatoire n fois dans les mêmes conditions de départ » avec $k \in \{0,1,2,\ldots,n\}$.

La probabilité de l'événement C est $p\left(C\right)=C_{n}^{k}p^{k}(1-p)^{n-k}$ avec $k\in\{0,1,2,\ldots,n\}$ et p=p(A).

Exemple

V- Variables aléatoire – loi de probabilité – espérance mathématique – variance – écart-type

5-1/ Variables aléatoire

On va relier une relation entre l'ensemble des cas possible vers l'ensemble $\mathbb R$.

Cette relation notée X est appelée variable aléatoire définie de la manière suivante : $X: \Omega \to \mathbb{R}$

 $\omega_{i}
ightarrow X\left(\omega_{i}
ight)=x_{i}$ tel que x_{i} est le nombre des numéros impaire pour chaque tirage ω_{i} .

Les nombres 0 et 1 et 2 sont appelés les valeurs de la variable aléatoire X, on note $x_1=0$ et $x_2=1$ et $x_3=2$, ces nombres constituent un ensemble noté $X\left(\Omega\right)=\{0,1,2\}$ st appelé ensemble des valeurs de la variable aléatoire X, dans le cas général on note $X\left(\Omega\right)=\{x_1,x_2,\ldots,x_n\}$.

Tous les cas possibles ω_i (les événements élémentaires) qui sont reliés par x_i forment une partie de Ω , cette partie (c'est un événement) sera notée par $(X=x_i)=\{\omega\in\Omega/X\,(\omega)=x_i\}.$

L'écriture $p(X = x_i)$ signifie probabilité de l'événement $(X = x_i)$.

5-2/ Loi de probabilité d'une variable aléatoire X

Définition

Soit X une variable aléatoire définie sur un univers Ω d'une expérience aléatoire.

L'ensemble des valeurs de X est $X(\Omega) = \{x_1, x_2, \ldots, x_n\}$.

Loi de probabilité de X : c'est de calculer toutes les probabilités $p\left(X=x_i\right)$ avec $x_i\in X\left(\Omega\right)$.

On a :
$$\sum_{1}^{n} p\left(X=x_{i}
ight)=1$$

Exemple

5-3/ Espérance mathématique - variance - écart-type d'une variable aléatoire \boldsymbol{X}

Définition

Soit X une variable aléatoire définie sur un univers \varOmega d'une expérience aléatoire.

L'ensemble des valeurs de X est $X(\Omega) = \{x_1, x_2, \dots, x_n\}$.

Le nombre $\sum_{i=1}^{n} x_i \cdot p(X = x_i)$ s'appelle l'espérance mathématique de la variable aléatoire X, on le note E(X).

Le nombre $E\left(X^2\right)-\left[E\left(X\right)\right]^2=\left[\sum_1^n\left(x_i\right)^2.\,p\left(X=x_i\right)\right]-\left[E\left(X\right)\right]^2$ s'appelle la variance de la variable aléatoire X, on la note $V\left(X\right)$. On a $V\left(X\right)\geq0$. Le nombre $\sigma\left(X\right)=\sqrt{V\left(X\right)}$ s'appelle l'écart-type de la variable aléatoire X, on

Exemple

le note $\sigma(X)$.

VI- Loi binomiale ou distribution binomiale

Définition et propriété

Soit p est la probabilité de l'événement A d'une expérience aléatoire (seulement une fois).

On répète cette expérience n fois (dans les mêmes conditions de départ).

On considère la variable aléatoire X définie de la manière suivante « le nombre de fois tel que l'évènement A est réalisé après la répétition de l'expérience de départ n fois »

L'ensemble des valeurs de X est $X\left(\Omega \right) = \{0,1,\ldots,n\}.$

X est appelé loi binomiale (ou distribution) de paramètres n et p, on la note $X=B\left(n,p\right) .$

Exemple

VII- Exercices

7-1/ Exercice 1

Une urne contient 10 boules : quatre boules rouges et six boules vertes (Les boules sont indiscernables au toucher).

On tire au hasard, simultanément, deux boules de l'urne.

Soit A l'évènement : « Les deux boules tirées sont rouges ».

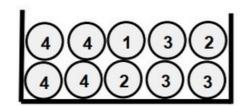
1. Montrer que $p(A) = \frac{2}{15}$

Soit X la variable aléatoire qui à chaque tirage associe le nombre de boules rouges restantes dans l'urne après le tirage des deux boules.

- 2. Montrer que l'ensemble des valeurs prises par X est $\{2,3,4\}$.
- 3. Montrer que $p\left(X=3\right)=\frac{8}{15}$ puis déterminer la loi de probabilité de la variable aléatoire X.

7-2/ Exercice 2

Une urne contient 10 boules portant les nombres 1; 2; 2; 3; 3; 3; 4; 4; 4; 4 (Les boules sont indiscernables au toucher):



On considère l'expérience suivante : on tire au hasard , successivement et sans remise, deux boules de l'urne.

Soit A l'évènement : "Obtenir deux boules portant deux nombres pairs".

1. Montrer que $p(A) = \frac{1}{3}$

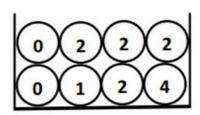
On répète l'expérience précédente trois fois de suite, en remettant dans l'urne les deux boules tirées après chaque expérience.

Soit X la variable aléatoire égale au nombre de fois où l'évènement A est réalisé.

2. Montrer que $p\left(X=1\right)=\frac{4}{9}$ puis déterminer la loi de probabilité de la variable aléatoire X.

7-3/ Exercice 3

Une urne contient huit boules indiscernables au toucher portant chacune un nombre comme indiqué sur la figure suivante :



On tire au hasard, simultanément, trois boules de l'urne.

Soit A l'événement : « Parmi les trois boules tirées, aucune boule ne porte le nombre 0 », et B l'événement : « Le produit des nombres portés par les trois boules tirées est égal à 8 »

1. Montrer que $p(A)=rac{5}{14}$ et que $p(B)=rac{1}{7}$

Soit X la variable aléatoire qui à chaque tirage associe le produit des nombres portés par les trois boules tirées.

2. Montrer que $p\left(X=16\right)=rac{3}{28}$

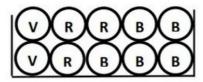
Le tableau suivant concerne la loi de probabilité de la variable aléatoire X :

X_i	0	4	8	16
$p(X = x_i)$				$\frac{3}{28}$

3. Compléter le tableau en justifiant chaque réponse.

7-4/ Exercice 4

Une urne contient 10 boules indiscernables au toucher : Cinq boules blanches, trois boules rouges et deux boules vertes :



On tire au hasard, simultanément, quatre boules de l'urne.

Soit A l'événement : "Parmi les quatre boules tirées, une seule boule est verte", et B l'événement : "Parmi les quatre boules tirées, il y a exactement trois boules de même couleur".

1. Montrer que $p(A)=rac{8}{15}$ et que $p(B)=rac{19}{70}$

Soit X la variable aléatoire qui à chaque tirage associe le nombre de boules vertes tirées.

- 2. Montrer que $p\left(X=2\right)=rac{2}{15}$
- 3. Déterminer la loi de probabilité de la variable aléatoire X et montrer que l'espérance mathématique $E\left(X\right)$ est égale à $\frac{4}{5}$.

7-5/ Exercice 5

Une caisse contient 3 boules blanches, 4 boules noires et 5 boules rouges. (indiscernables au toucher).

On tire au hasard et simultanément trois boules de la caisse.

On considère les deux événements :

- A: Obtenir trois boules de même couleurs
- B: Obtenir trois boules de couleurs différentes deux à deux
- 1. Montrer que $P(A) = \frac{3}{44}$ et $P(B) = \frac{3}{11}$.

Soit X la variable aléatoire qui à chaque tirage fait correspondre le nombre de couleur des boules tirées.

- 2. Déterminer les valeurs prises par X.
- 3. Déterminer la loi de probabilité de la variable aléatoire X, et calculer l'espérance mathématique E(X).

7-6/ Exercice 6

Une caisse contient dix boules : 5 boules blanches, 3 boules rouges et deux boules noires (indiscernables au toucher).

On tire au hasard et simultanément quatre boules de la caisse.

On considère les deux événements :

- A: Obtenir une seule boule rouge.
- B: Obtenir une boule blanche au moins.
- 1. Montrer que $P(A) = \frac{1}{2}$ et $P(B) = \frac{41}{42}$.

Soit X la variable aléatoire qui à chaque tirage associe le nombre de boules rouges tirées.

- 2. Vérifier que les valeurs prises par X sont $0\ ;\ 1\ ;\ 2\ ;\ 3.$
- 3. Montrer que $P\left(X=0
 ight)=rac{1}{6}$ et $P\left(X=2
 ight)=rac{3}{10}$.
- 4. Déterminer la loi de probabilité de la variable aléatoire X.