

Mathématiques: 2Bac SPC-SVT-Agro-STE-STM

Séance 12 (Calcul intégral)

Professeur: Mr CHEDDADI Haitam

Sommaire

I- Intégral d'une fonction continue sur un segment [a,b]

II- Propriétés : Relation de Shales - Linéarité - Ordre

2-1/ Propriété

2-2/ Relation de Chasles

2-3/ Linéarité

III- Valeur moyenne

IV- Intégration par parties

V- Applications sur les intégrales

5-1/ Calcul des surfaces

5-2/ Calcul des volumes

VI- Exercices

6-1/ Exercice 1

6-2/ Exercice 2

6-3/ Exercice 3

6-4/ Exercice 4

6-5/ Exercice 5

6-6/ Exercice 6

I- Intégral d'une fonction continue sur un segment $\left[a,b\right]$

Définition

f est une fonction continue sur un segment $\left[a,b\right]$ et F est une primitive de f sur $\left[a,b\right]$.

Le nombre $F\left(b\right)-F\left(a\right)$ est appelé intégral de f de a à b.

On note $F(b) - F(a) = \int_a^b f(x) \, \mathrm{d} \, x = [F(x)]_a^b$.

On lit intégral de a à b de f(x)dx.

Remarque

Dans l'écriture $\int_a^b f(x) dx$ on peut remplacer le variable x soit par les variables y et z et t, donc : $\int_a^b f(x) dx = \int_a^b f(y) dy = \int_a^b f(t) dt = \dots$

Exemple

II- Propriétés : Relation de Shales - Linéarité - Ordre

2-1/ Propriété

f est une fonction dérivable sur un segment $\left[a,b\right]$ et sa fonction dérivée f ' est continue sur $\left[a,b\right].$

On a:

$$\int_a^b f'(x) dx = \left[f(x)\right]_a^b = f(b) - f(a)$$
 $\int_a^b c dx = \left[cx\right]_a^b = c(b-a); \ (c \in \mathbb{R})$

2-2/ Relation de Chasles

f est une fonction continue sur un segment [a,b].

On a:

$$\begin{split} &\int_a^a f(x) \,\mathrm{d}\, x = 0 \\ &\int_b^a f(x) \,\mathrm{d}\, x = -\int_a^b f(x) \,\mathrm{d}\, x \\ &\int_a^c f(x) \,\mathrm{d}\, x + \int_c^b f(x) \,\mathrm{d}\, x = \int_a^b f(x) \,\mathrm{d}\, x \;. \; \text{(Relation de Chasles)}. \end{split}$$

2-3/ Linéarité

f et g sont deux fonctions continues sur un segment $\left[a,b\right]$.

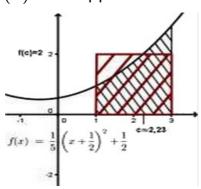
On a:

$$\int_{a}^{b}\left(f+g
ight)\left(x
ight)\mathrm{d}\,x=\int_{a}^{b}f\left(x
ight)\mathrm{d}\,x+\int_{a}^{b}g\left(x
ight)\mathrm{d}\,x\ \int_{a}^{b}lpha f\left(x
ight)\mathrm{d}\,x=lpha\int_{a}^{b}f\left(x
ight)\mathrm{d}\,x\;;\;\left(lpha\in\mathbb{R}
ight)$$

III- Valeur moyenne

f est une fonction continue sur un segment $\left[a,b\right]$ et a < b.

Il existe au moins un élément c de [a,b] tel que : $(b-a) \times f(c) = \int_a^b f(x) \, \mathrm{d}\, x$ Le nombre $f(c) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}\, x$ s'appelle la valeur moyenne de f sur [a,b].



IV- Intégration par parties

Théorème

u et v sont deux fonctions dérivables sur [a,b]. Leurs dérivées u' et v' sont continues sur [a,b]. On a :

$$\int_{a}^{b} \mathbf{u}(\mathbf{x}) \times \mathbf{v}'(\mathbf{x}) d\mathbf{x} = \underbrace{\left[\mathbf{u}(\mathbf{x}) \times \mathbf{v}(\mathbf{x})\right]_{a}^{b}}_{(2)} - \underbrace{\int_{a}^{b} \mathbf{u}'(\mathbf{x}) \times \mathbf{v}(\mathbf{x}) d\mathbf{x}}_{(3)}$$

$$\mathbf{u}(\mathbf{x}) = \cdots \qquad \mathbf{u}'(\mathbf{x}) = \cdots$$

$$(1) \downarrow \qquad (2) \searrow \qquad - \downarrow (3)$$

$$\mathbf{v}'(\mathbf{x}) = \cdots \qquad \mathbf{v}(\mathbf{x}) = \cdots$$

Exemple

V- Applications sur les intégrales

5-1/ Calcul des surfaces

Propriété

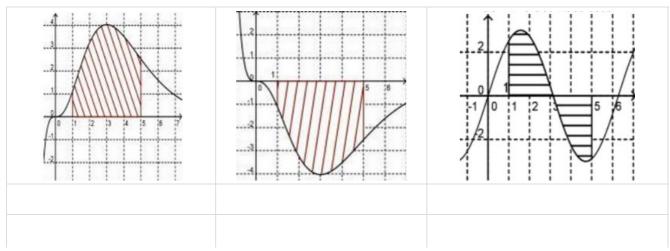
 $f\ et\ g$ deux fonctions continues sur [a,b] , $\left(\mathscr{C}_f\right)\ et\ \left(\mathscr{C}_g\right)$ les courbes de $f\ et\ g$ dans le plan (P) qui est rapporté à un repère orthogonal $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

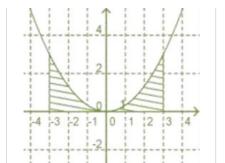
L'aire S (la surface) de la partie (F) du plan (P) comprise entre la courbe $\left(\mathscr{C}_f\right)$ et l'axe des abscisses et les droites d'équations x=a et x=b est

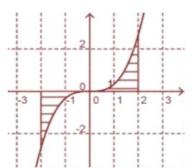
$$\int_{a}^{b}\left|f\left(x
ight)
ight|\mathrm{d}\left.x imes\left|\left|\overrightarrow{j}
ight|
ight|$$
 (unité d'aire)

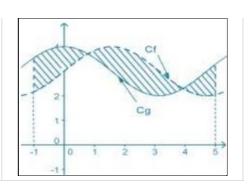
L'aire S (la surface) de la partie du plan (P) comprise entre la courbe $\left(\mathscr{C}_f\right)\,et\,\left(\mathscr{C}_g\right)\,$ est $\int_a^b |f\left(x
ight)-g(x)|\,\mathrm{d}\,x imes\left|\left|\stackrel{
ightarrow}{i}\right|\right| imes\left|\left|\stackrel{
ightarrow}{j}\right|\right|$ (unité d'aire)

Les cas possibles









5-2/ Calcul des volumes

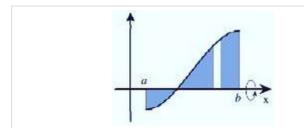
Propriété

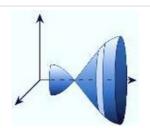
L'espace est muni d'un repère orthogonal $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j},\stackrel{\rightarrow}{k}\right)$.

 (\mathscr{C}_f) la courbe de f, une fonction continue sur [a,b] avec (a < b).

Le solide de révolution obtenu par la rotation de la courbe $\left(\mathscr{C}_f\right)$ de la fonction f sur [a,b] au tour de l'axe des abscisse de 360° , son volume est

$$V = \int_{a}^{b} \pi(\mathbf{f}\left(\mathbf{x}
ight))^{2} \, \mathrm{d}\, x imes \left|\left|\overrightarrow{i}
ight|\right| imes \left|\left|\overrightarrow{j}
ight|\right| imes \left|\left|\overrightarrow{k}
ight|\right|$$
 (unité de volume).





Exemple

VI- Exercices

6-1/ Exercice 1

Calculer les intégrales suivantes :

$$egin{aligned} a &= \int_1^2 \left(x^2 + 2x + 3
ight) \mathrm{d}\, x \ b &= \int_0^1 \left(x^5 - 6x
ight) \mathrm{d}\, x \ c &= \int_1^2 rac{x+1}{\left(x^2 + 2x
ight)^3} \, \mathrm{d}\, x \ d &= \int_0^1 \left(x + 3
ight) \left(x^2 + 6x + 1
ight)^3 \, \mathrm{d}\, x \ e &= \int_{-1}^1 rac{e^{-x}}{1 + e^{-x}} \, \mathrm{d}\, x \end{aligned}$$

$$f = \int_0^1 rac{e^x + 1}{e^x + x} \, \mathrm{d}\, x \ g = \int_{rac{1}{e}}^e rac{e^x + 1}{e^x - 2xe^x + x^2} \, \mathrm{d}\, x \ h = \int_{rac{\pi}{4}}^rac{\pi}{2} \left(\cos x
ight)^2 \, \mathrm{d}\, x \ j = \int_1^2 rac{e^{rac{1}{x}}}{x^2} \, \mathrm{d}\, x$$

6-2/ Exercice 2

On considère les deux intégrales $I=\int_0^{\frac{\pi}{4}} \frac{\cos x}{\cos x+\sin x} \,\mathrm{d}\,x$ et $J=\int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x+\sin x} \,\mathrm{d}\,x$

- 1. Calculer I-J.
- 2. Calculer I+J.
- 3. En déduire la valeur de I et J.

6-3/ Exercice 3

Calculer les intégrales suivantes par la méthode d'intégration par parties :

$$I_1 = \int_0^1 x e^x \, \mathrm{d} \, x$$
 $I_2 = \int_1^e x \ln x \, \mathrm{d} \, x$ $I_3 = \int_0^\pi x \sin x \, \mathrm{d} \, x$ $I_4 = \int_0^{\frac{\pi}{2}} x^2 \sin x \, \mathrm{d} \, x$ $I_5 = \int_{1_{\frac{\pi}{2}}}^x \ln t \, \mathrm{d} \, t$ $I_{10} = \int_0^1 x e^{2x} \, \mathrm{d} \, x$ $I_{11} = \int_0^1 x e^{2x} \, \mathrm{d} \, x$

6-4/ Exercice 4

Soit f la fonction définie par $f(x) = rac{1}{x} + \ln x$

Soit (\mathscr{C}_f) sa courbe représentative dans un repère orthonormé $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

1)Calculer les intégrales $I=\int_1^e rac{dx}{x}$ et $J=\int_1^e \ln x dx$.

- 2. Calculer l'aire de la partie du plan délimitée par la courbe (\mathscr{C}_f) et l'axe des abscisses et les droites d'équations x=1 et x=e.
- 3. Montrer que $G\left(x\right)=x\left[\left(\ln x\right)^{2}-2\ln x+2\right]$ est une fonction primitive de la fonction $g\left(x\right)=\left(\ln x\right)^{2}.$

Soit $t\in]0;1[$

- 4. Calculer les intégrales $A=\int_t^1\left(\frac{\ln x}{x}\right)\mathrm{d}\,x$ et $B=\int_t^1\left(\ln x\right)^2\mathrm{d}\,x$.
- 5. Calculer en fonction de t le volume V(t) du solide de révolution engendré par la rotation autour de l'axe des abscisses de la courbe (\mathscr{C}_f) sur l'intervalle [t;1].
- 6. Calculer $\lim_{t o +\infty} Vigg(tigg)$

6-5/ Exercice 5

Soit $f:x\mapsto rac{1}{e^x(1-x)}$ et $x\in \left[0;rac{1}{2}
ight]$

- 1. Étudier les variations de f sur $\left[0; \frac{1}{2}\right]$
- 2. En déduire que : $\left(orall x \in \left[0; \frac{1}{2} \right] \right) : \ 1 \leq f(x) \leq \frac{2}{\sqrt{e}}$

3. Vérifier que : $\left(orall x \in \left[0; rac{1}{2}
ight]
ight) : \ 1 + x + rac{x^2}{1-x} = rac{1}{1-x}$

4. Montrer que : $\int_0^{\frac{1}{2}} \frac{1+x}{e^x} \, \mathrm{d}\, x + \int_0^{\frac{1}{2}} x^2 f(x) \, \mathrm{d}\, x = \int_0^{\frac{1}{2}} \frac{\mathrm{d}\, x}{e^x (1-x)}$

5. Calculer : $\int_0^{\frac{1}{2}} \frac{1+x}{e^x} \,\mathrm{d}\,x$

6. Montrer que : $rac{1}{24} \leq \int_0^{rac{1}{2}} x^2 f(x) \, \mathrm{d}\, x \leq rac{1}{12\sqrt{e}}$

6-6/ Exercice 6

Pour tout réel positif a, on définit $I\left(a\right)=\int_{1}^{a}\frac{\ln x}{x^{2}}\,\mathrm{d}\,x.$

- 1. À l'aide d'une intégration par parties, montrer que $I\left(a
 ight)=-rac{\ln(a)+1}{a}+1.$
- 2. En déduire la limite de $I\left(a\right)$ quand a tend vers $+\infty$.

On définit maintenant $J\left(a\right)=\int_{1}^{a}rac{\ln x}{x^{2}+1}\,\mathrm{d}\,x.$

3. Vérifier que $(\forall x\geq 1):\ x^2\leq x^2+1\leq 2x^2$, puis montrer que $\frac{1}{2}I\left(a\right)\leq J\left(a\right)\leq I\left(a\right).$