

Mathématiques : 2Bac Eco-SGC

Séance 10 (Fonctions exponentielles)

Professeur: Mr ETTOUHAMY Abdelhak

Sommaire

I- Fonction exponentielle népérienne

- 1-1/ Définition
- 1-2/ Conséquence
- 1-3/ Propriétés
- 1-4/ Propriétés algébriques
- 1-5/ Courbe représentative de la fonction exponentielle
- 1-6/ Limites usuelles
- 1-7/ Dérivée de la fonction exponentielle

II- Exponentielle de base a

- 2-1/ Définition
- 2-2/ Propriété
- 2-3/ Étude de la fonction exponentielle de base a
- 2-4/Dérivée de la fonction exponentielle de base a
- 2-5/ Tableau de variations
- 2-6/ Courbes

III- Exercices

- 3-1/ Exercice 1
- 3-2/ Exercice 2
- 3-3/ Exercice 3
- 3-4/ Exercice 4

I- Fonction exponentielle népérienne

1-1/ Définition

On appelle fonction exponentielle népérienne notée Exp, la fonction réciproque de la fonction logarithme népérien.

$$exp: \mathbb{R} \to]0, +\infty[$$

 $x \to exp(x)$

1-2/ Conséquence

- Les fonctions Ln et exp sont des fonctions réciproques l'une de l'autre, pour tout x>0 et pour tout réel y :

$$\ln\left(x\right) = y \Leftrightarrow exp\left(y\right) = x$$

- Pour tout réel x on écrit aussi : $\forall x \in \mathbb{R}$:

Exemple

1-3/ Propriétés

$$e^0 = 1 \ et \ e^1 = e$$
 $e^{-1} = \frac{1}{e^1} \ et \ \sqrt{e} = e^{\frac{1}{2}}$

$$(orall x \in \mathbb{R}) \; ; \; \ln{(e^x)} = x$$

$$(\forall x>0) \; ; \; e^{\ln x}=x$$

$$(\forall x \in \mathbb{R}) \, (\forall y > 0) \; ; \; \ln y = x \Leftrightarrow e^x = y$$

$$(orall x,y\in\mathbb{R})\ ;\ e^x=e^y\Leftrightarrow x=y$$

$$(\forall x,y \in \mathbb{R}) \; ; \; e^x > e^y \Leftrightarrow x > y$$

1-4/ Propriétés algébriques

Pour tous réels x et y et por tout nombre rationnel $r \in \mathbb{Q}$ on a :

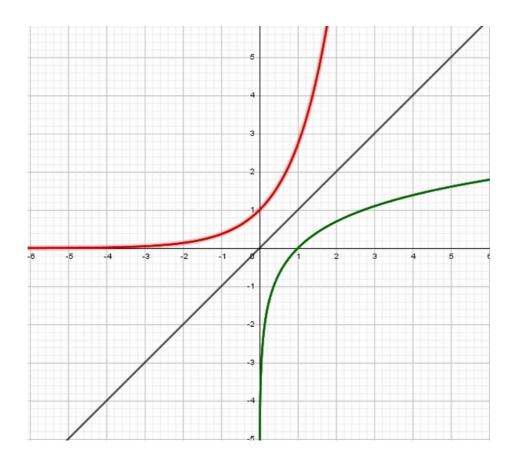
$$e^x imes e^y = e^{x+y}$$
 $e^{-x} = rac{1}{e^x}$
 $rac{e^x}{e^y} = e^{x-y}$
 $(e^x)^r = e^{xr}$

1-5/ Courbe représentative de la fonction exponentielle

On a vu que la fonction exponentielle népérienne est la fonction réciproque de la fonction logarithme népérien.

Donc la courbe de la fonction exp notée \mathscr{C}_{exp} et la courbe de la fonction \ln notée \mathscr{C}_{\ln} sont symétriques par rapport a la droite (D) d'équation y=x, bien entendu, dans un repère orthonormal

La figure ci-dessous donne les représentations graphiques des deux fonctions :



I- Fonction exponentielle népérienne

1-6/ Limites usuelles

$$egin{aligned} &\lim_{x o +\infty} e^x = +\infty \ &\lim_{x o +\infty} rac{e^x}{x} = +\infty \ \lim_{x o +\infty} rac{e^x}{x^n} = +\infty \ (n\in\mathbb{N}^*) \ &\lim_{x o -\infty} e^x = 0 \ \lim_{x o -\infty} xe^x = 0 \ \lim_{x o -\infty} x^n e^x = 0 \ (n\in\mathbb{N}^*) \ \lim_{x o 0} rac{e^x - 1}{x} = 1 \end{aligned}$$

1-7/ Dérivée de la fonction exponentielle

Propriété

la fonction $x\mapsto e^x$ est dérivable sur $\mathbb R$ et $(orall x\in\mathbb R)$ $(e^x)'=e^x$.

Soit u une fonction dérivable sur un intervalle I.

Alors $x\mapsto e^x$ est dérivable sur I et $(orall x\in\mathbb{R})\,\left(e^{u(x)}
ight)'=u'(x)e^{u(x)}$

Remarque

Soit U une fonction dérivable sur un intervalle I.

Les primitives sur I de la fonction $x\mapsto u'(x)e^{u(x)}$ sont les fonctions $x\mapsto e^{u(x)}+\lambda \ (\lambda\in\mathbb{R}).$

Exemple

II- Exponentielle de base a

2-1/ Définition

Soit *a* un réel strictement positif et différent de 1.

On appelle fonction exponentielle de base a, la fonction exp_a qui à tout réel x associe le réel a^x tel que $exp_a\left(x\right)=a^x=e^{x\ln(a)}$.

Remarque

L'ensemble de définition de a^x est \mathbb{R} , l'exigence de stricte positivité et différent de 1 ne porte que sur a et l'égalité $a^x=e^{x\ln(a)}$ permet de comprendre pourquoi (condition d'existence d'un logarithme).

Lorsque a=e, on retrouve la fonction exp.

Pour tout réel strictement positif a et différent de 1, et pour tout réel x, on a $a^x>0$

Pour tout réel strictement positif a et différent de 1, et pour tout réel x, on a $\ln{(a^x)} = x \ln{(a)}$

Exemple

2-2/ Propriété

Pour tous nombres réel strictement positifs a et b, et pour tous réel x et y on a :

$$egin{array}{lll} a^0 = 1 & ; & a^1 = a & ; & a^x imes a^y = a^{x+y} \ a^x imes b^x = \left(a imes b
ight)^x & ; & \left(a^x
ight)^y = a^{xy} \ rac{a^x}{a^y} = a^x - y & ; & rac{1}{a^x} = a^{-x} \end{array}$$

II- Exponentielle de base a

2-3/ Dérivée de la fonction exponentielle de base lpha

Propriété

Soit a un réel strictement positif.

La fonction exponentielle de base a est dérivable sur \mathbb{R}^{+*} , et pour tout réel x on a :

$$(a^x)' = e^{x \ln(a)} = \ln(a). a^x$$

Exemple

2-4/ Tableau de variations

Soit a un réel strictement positif et différent de 1.

Cas 1 : 0 < a < 1

Alors, $\ln(a) < 0$ d'où $\left(a^x\right)' < 0$, donc la fonction $x \mapsto a^x$ est décroissante sur $\mathbb R.$

$$\text{De plus} \lim_{x \to +\infty} a^x = \lim_{x \to +\infty} e^{x \ln(a)} = 0 \text{ et } \lim_{x \to -\infty} a^x = \lim_{x \to -\infty} e^{x \ln(a)} = +\infty.$$

X	+∞	- ∞
$(a^x)'$		_
a^x	+∞	
		—

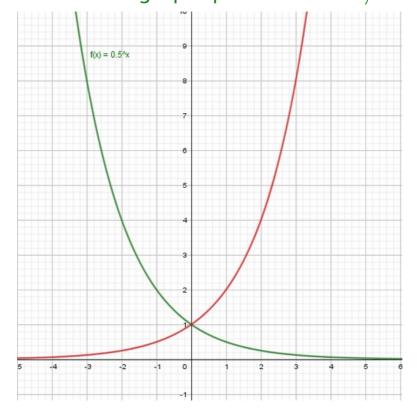
Cas 2 : a > 1

Alors, $\ln(a)>0$ d'où $\left(a^x\right)'>0$, donc la fonction $x\mapsto a^x$ est croissante sur $\mathbb R$.

De plus
$$\lim_{x \to +\infty} a^x = \lim_{x \to +\infty} e^{x \ln(a)} = +\infty$$
 et $\lim_{x \to -\infty} a^x = \lim_{x \to -\infty} e^{x \ln(a)} = 0.$

×	+∞	$-\infty$
$(a^x)'$	+	
a^x		→ 0

2-5/ Les représentations graphiques de $x\mapsto 0, 5^x$ et $\,x\mapsto 2^x$



III- Exercices

3-1/ Exercice 1

Partie A : Étude d'une fonction auxiliaire

Soit la fonction numérique g d'une variable réelle x définie sur $\mathbb R$ par :

$$g\left(x\right) = e^{x}\left(x - 1\right) + 1$$

- 1. Montrer que pour tout $x \in \mathbb{R}$ on a $g'(x) = xe^x$.
- 2. Étudier le signe de g'(x) pour tout $x \in \mathbb{R}$.
- 3. Calculer $g\left(0\right)$ et dresser le tableau de variations de g (le calcul de limites n'est pas demandé).
- 4. Déduire que $g\left(x\right)\geq0$ pour tout $x\in\mathbb{R}.$

Partie B - Étude de la fonction

Soit fla fonction numérique d'une variable réelle x définie sur $\mathbb R$ par :

$$f\left(x\right) = xe^{x} - 2e^{x} + x$$

On appelle (C_f) la courbe représentative de dans un repère orthonormé $\left(O,\stackrel{\to}{i},\stackrel{\to}{j}\right)$ d'unité graphique 2cm.

- 5. Montrer que $\lim_{x \to +\infty} f(x) = +\infty$
- 6. Montrer que $\lim_{x\to +\infty} \frac{f(x)}{x} = +\infty$ puis interpréter géométriquement ce résultat.
- 7. Montrer que $\lim_{x o -\infty}f(x)=-\infty$ (on rappelle que $\lim_{x o -\infty}xe^x=0$)
- 8. Montrer que $\lim_{x\to -\infty} \frac{f(x)}{x}=1$ et que $\lim_{x\to -\infty} (f(x)-x)=0$, puis interpréter géométriquement ce résultat.
- 9. Montrer que pour tout $x\in\mathbb{R}$ on a f'(x)=g(x).
- 10. Déduire le signe de $f^{,}(x)$ sur $\mathbb R$ et dresser le tableau de variations de f.
- 11. Montrer que l'équation f(x)=0 admet une seule solution lpha telle que $rac{3}{2}<lpha<2.$
- 12. Montrer que $f``(x)=xe^x$ pour tout $x\in\mathbb{R}$, et en déduire que la courbe $ig(C_fig)$ admet un point d'inflexion $I(0\,;-2)$.

3-2/ Exercice 2

On considère la fonction f définie sur $\mathbb R$ par : $f\left(x
ight)=x-2-e^{-x}$

- 1. Calculer $\lim_{x\to +\infty}f(x)$.
- 2. Montrer que la droite $(\Delta): y=x-2$ est une asymptote oblique à $\left(C_f\right)$ quand $x \to +\infty.$
- 3. Vérifier que $f\left(x
 ight)=x\left(1-rac{2}{x}-rac{1}{xe^{x}}
 ight)$ pour tout $x\in\mathbb{R}^{st}.$
- 4. Déduire $\lim_{x \to -\infty} f\left(x\right)$ puis interpréter le résultat.

- 5. Étudier la position relative de $ig(C_fig)$ et la droite $ig(\Delta):\ y=x-2.$
- 6. Calculer f'(x) pour tout $x \in \mathbb{R}$.
- 7. Donner le tableau de variations de f.
- 8. Tracer (C_f) .

3-3/ Exercice 3

On considère la fonction f définie sur $\mathbb R$ par : $f(x)=(x-1)^2e^x$ soit $\left(C_f\right)$ la courbe représentative de la fonction f dans un repère orthonormé $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$.

- 1. Calculer $\lim_{x \to +\infty} f(x)$.
- 2. Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ puis interpréter géométriquement le résultat.
- 3. Vérifier que $f\left(x
 ight)=\left(rac{x-1}{x}
 ight)^2 x^2 e^x$ pour tout $x\in\mathbb{R}^*.$
- 4. Montrer que $\lim_{x o -\infty} f\left(x
 ight) = 0$ puis interpréter géométriquement le résultat.
- 5. Montrer que $f'(x)=ig(x^2-1ig)e^x$ pour tout $x\in\mathbb{R}.$
- 6. Étudier le signe de f'(x) sur $\mathbb R$ puis calculer f(-1) et f(1) et dresser le tableau de variation de f.
- 7. Montrer que F définie par $F\left(x\right)=\left(x^2-4x+5\right)e^x$ est une fonction primitive de la fonction f sur \mathbb{R} .
- 8. tracer (C_f)
- 9. Déterminer géométriquement le nombre de solutions de l'équation $f\left(x\right)=1$

3-4/ Exercice 4

Partie I

Soit la fonction numérique g d'une variable réelle x définie sur $\mathbb R$ par : $g\left(x\right)=2+xe^x$

- 1. Calculer $\lim_{x \to +\infty} g\left(x\right)$ et $\lim_{x \to -\infty} g\left(x\right)$.
- 2. Calculer g'(x) pour tout $x \in \mathbb{R}$ puis déduire le signe.
- 3. En déduire que $g\left(x
 ight)>0$ sur $\mathbb{R}.$

Partie II

Soit f la fonction numérique d'une variable réelle x définie sur $\mathbb R$ par : $f(x)=2x+(x-1)e^x$

Et soit $\left(C_f\right)$ la courbe représentative de la fonction f dans un repère orthonormé $\left(O,\stackrel{\to}{i},\stackrel{\to}{j}\right)$.

- 4. Montrer que $\lim_{x\to -\infty}f\left(x\right)=+\infty$ et $\lim_{x\to -\infty}f\left(x\right)-2x=0$, puis interpréter géométriquement le résultat.
- 5. Montrer que $\lim_{x\to+\infty}f(x)=+\infty$ et $\lim_{x\to+\infty}\frac{f(x)}{x}=+\infty$, puis interpréter géométriquement le résultat.
- 6. Étudier la position relative de la droite $(\Delta):\ y=2x$ et $ig(C_fig).$
- 7. Montrer que f'(x)=g(x) pour tout $x\in\mathbb{R}.$
- 8. Étudier le signe de f'(x) puis donner le tableau de variation de la fonction f.
- 9. Déterminer l'équation de la tangente à la courbe au point d'abscisse 0.
- 10. Montrer que l'équation f(x)=0 admet une seule solution lpha tel que 0<lpha<1.
- 11. Tracer (C_f) et (Δ) .