

Mathématiques : 3ème Année Collège

Séance 11 (Vecteurs et translation)

Professeur: Mr BENGHANI Youssef

Sommaire

I- Les vecteurs

- 1-1/ Vocabulaire
- 1-2/ Égalité de deux vecteurs
- 1-3/ Vecteur opposé
- 1-4/ Somme de deux vecteurs
- 1-5/ Relation de Chasles
- 1-6/ Produit d'un vecteur par un nombre réel
- 1-7/ Propriété des points alignés et des droites parallèles
- 1-8/ Vecteur et milieu d'un segment

II- La translation

- 2-1/ Image d'un point par une translation
- 2-2/ Image des figures usuelles par une translation

III- Exercices

- 3-1/ Exercice 1
- 3-2/ Exercice 2
- 3-3/ Exercice 3
- 3-4/ Exercice 4
- 3-5/ Exercice 5
- 3-6/ Exercice 6
- 3-7/ Exercice 7

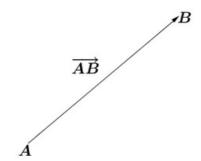
I- Les vecteurs

1-1/ Vocabulaire

Définition

Un vecteur \overrightarrow{AB} est caractérisé par trois composantes :

- La direction : la direction de la droite (AB)
- ullet Le sens : de A vers B
- ullet La Longueur : la distance AB



Remarque

Tout point A définit un vecteur nul noté $\overset{
ightarrow}{0}$, on écrit : $\overset{
ightarrow}{AA}=\overset{
ightarrow}{0}$.

1-2/ Égalité de deux vecteurs

Propriété

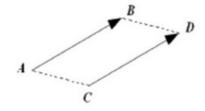
 $\overrightarrow{AB} = \overrightarrow{CD}$ signifie que :

- ullet \overrightarrow{AB} et \overrightarrow{CD} ont la même direction $:(AB)\parallel(CD)$
- ullet A \overrightarrow{AB} et \overrightarrow{CD} ont le même sens
- ullet \overrightarrow{AB} et \overrightarrow{CD} ont la même longueur : AB=CD

Remarque

Si $\overrightarrow{AB}=\overrightarrow{CD}$ tel que les points ne sont pas alignés, alors le quadrilatère ABDC est un parallélogramme.

Exemple



1-3/ Vecteur opposé

Définition

Le vecteur opposé d'un vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} , et on écrit : $\overrightarrow{AB} = -\overrightarrow{BA}$

Remarque

Deux vecteurs opposés ont la même direction et même longueur, mais ils ont des sens opposés.

Exemple

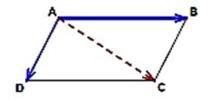
1-4/ Somme de deux vecteurs

Définition

La somme de deux vecteurs \overrightarrow{AB} et \overrightarrow{AD} est le vecteur \overrightarrow{AC} tel que ABCD soit un parallélogramme.

On écrit :
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$$

Exemple



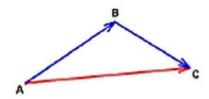
1-5/ Relation de Chasles

Propriété

Pour tous les points A, B et C, on a : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

C'est appelé : Relation de Chasles

Exemple



1-6/ Produit d'un vecteur par un nombre réel

Définition

Soit k un nombre réel et \overrightarrow{AB} un vecteur non nul.

Le vecteur \overrightarrow{AC} est le produit du vecteur \overrightarrow{AB} par le nombre réel k si $C \in (AB)$ tel que $\overrightarrow{AC} = \overrightarrow{kAB}$

- ullet Si k>0 alors $AC=\ k$. AB et \overrightarrow{AB} et \overrightarrow{AC} ont le même sens.
- ullet Si k<0 alors $AC=\ k.\ AB$ et \overrightarrow{AB} et \overrightarrow{AC} ont des sens contraires.

Exemple

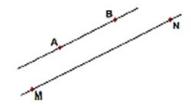
1-7/ Propriété des points alignés et des droites parallèles

Propriété 1

Si $\overrightarrow{AC} = \overrightarrow{kAB}$ alors A, B et C sont des points alignés.

Propriété 2

Si $\overrightarrow{AB}=\overrightarrow{kMN}$ alors $(AB)\parallel(MN)$, on dit que les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires.



Exemple

1-8/ Vecteur et milieu d'un segment

Propriété

A, B et M sont des points.

M est le milieu de $\left[AB\right]$ signifie que :

$$\left\{ egin{aligned} \overrightarrow{AM} = \overrightarrow{MB} = rac{1}{2}\overrightarrow{AB} \ \overrightarrow{MA} + \overrightarrow{MB} = \stackrel{
ightarrow}{0} \ \overrightarrow{MA} = -\overrightarrow{MB} \end{aligned}
ight.$$

Exemple

II- La translation

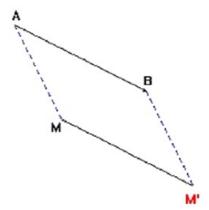
2-1/ Image d'un point par une translation

Définition

A et B sont deux points distincts.

M' est l'image de M par la translation qui transforme A en B signifie que :

- ullet $\overrightarrow{MM'}=\overrightarrow{AB}$
- ullet ABM'M est un parallélogramme



Remarque

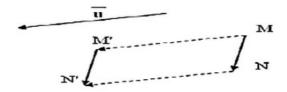
Si $M\in (AB)$ alors M' l'image de M par la translation de vecteur \overrightarrow{AB} appartient à la droite (AB).

Propriété

Soient M et N deux points du plan.

Si M' et N' sont les images respectives des points M et N par une translation, alors $\overrightarrow{M'N'} = \overrightarrow{MN}$.

Exemple



2-2/ Image des figures usuelles par une translation

Propriété

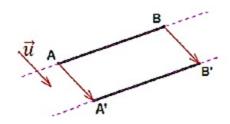
L'image d'une droite (AB) par une translation est une droite (A'B') parallèle à (AB).

Exemple

Propriété

L'image d'un segment [AB] par une translation est un segment [A'B'] de même longueur.

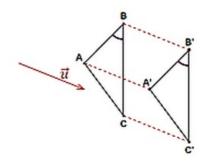
Exemple



Propriété

L'image d'un angle \widehat{ABC} par une translation est un angle $\widehat{A'B'C'}$ de même mesure.

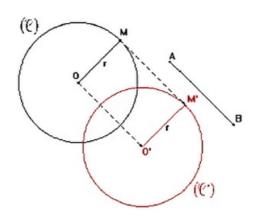
Exemple



Propriété

L'image d'un cercle (\mathscr{C}) par une translation est un cercle (\mathscr{C}') de même rayon.

Exemple



III- Exercices

3-1/ Exercice 1

Exprimer le plus simple possible les expressions suivantes :

$$\bigcirc \overrightarrow{AC} - \overrightarrow{BC} = \ \bigcirc \overrightarrow{DA} + \overrightarrow{AB} - \overrightarrow{DB} = \ \bigcirc \overrightarrow{MO} + \overrightarrow{AM} + \overrightarrow{OA} = \ \bigcirc$$

$$\underbrace{ \left(\!\!\! \begin{array}{c} \stackrel{\textstyle \bullet}{OA} + \stackrel{\textstyle \longrightarrow}{DO} + \stackrel{\textstyle \longrightarrow}{AB} + \stackrel{\textstyle \longrightarrow}{CD} + \stackrel{\textstyle \longrightarrow}{BC} = \\ \stackrel{\textstyle \bullet}{O} \stackrel{\textstyle \longrightarrow}{AD} - \stackrel{\textstyle \longrightarrow}{FD} + \stackrel{\textstyle \longrightarrow}{ED} - \stackrel{\textstyle \longrightarrow}{AF} + \stackrel{\textstyle \longrightarrow}{BE} + \stackrel{\textstyle \longrightarrow}{AB} = \\ \stackrel{\textstyle \bullet}{O} \stackrel{\textstyle \longrightarrow}{AD} \stackrel{\textstyle \longrightarrow}{AD} - 2 \stackrel{\textstyle \longrightarrow}{DA} - 2 \stackrel{\textstyle \longrightarrow}{DA} - 2 \stackrel{\textstyle \longrightarrow}{DA} =$$

3-2/ Exercice 2

On considère un triangle ABC.

Construire les points K, L, M et N tel que :

$$\overrightarrow{AK} = \overrightarrow{AB} + 2\overrightarrow{AC}$$
 $\overrightarrow{AL} = \overrightarrow{AB} + \overrightarrow{AC}$
 $\overrightarrow{AM} = -\frac{3}{2}\overrightarrow{AB}$
 $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$

3-3/ Exercice 3

ABC est un triangle

- 1. Construire le point M l'image du point C par la translation qui transforme A en B.
- 2. Construire le point N tel que : $\overrightarrow{BN} = \overrightarrow{BA} + \overrightarrow{BC}$
- 3. Montrer que le point C est le milieu du segment [MN].

3-4/ Exercice 4

EFG est un triangle et le point I est le milieu de [EG] et le point H est le symétrique du point F par rapport au point I.

Soit t la translation qui transforme E en F.

- 1. Construire le point K l'image de G par la translation t.
- 2. Montrer que G est l'image de H par la translation t.
- 3. En déduire que G est le milieu de [HK].

Soit (C) le cercle de diamètre HK.

4. Déterminer l'image du cercle (C) par la translation t.

3-5/ Exercice 5

Soient A, B, C et D des points dans le plan.

- 1. Prouver que les point B, C et D sont alignés si $5\overrightarrow{AD}=3\overrightarrow{AB}+2\overrightarrow{AC}$.
- 2. Prouver que les point A, C et D sont alignés si $\overrightarrow{7BC} = \overrightarrow{4BA} + \overrightarrow{3BD}$.

3-6/ Exercice 6

Soit ABC un triangle.

- 1. Construire les points D et E tel que $\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC}$ et $\overrightarrow{CE}=2\overrightarrow{AB}$.
- 2. Montrer que : $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$ et $\overrightarrow{AE} = 2\overrightarrow{AB} + \overrightarrow{AC}$.
- 3. En déduire que les points A, E et D sont alignés.

3-7/ Exercice 7

EFG est un triangle et O est le milieu de [FG].

On considère t la translation qui transforme E en \mathcal{O} .

- 1. Construire les points A et B tel que A est l'image de F par la translation t et $\overrightarrow{EB}=\overrightarrow{EG}+\overrightarrow{EO}.$
- 2. Prouver que B est l'image de G par la translation t.
- 3. Déterminer l'image de la droite (EF) par la translation t.
- 4. Montrer que $\widehat{FEG} = \widehat{AOB}$.

Soit K un point tel que : $\overrightarrow{FK} = -2\overrightarrow{EO}$.

- 5. Construire le point K.
- 6. Montrer que les points A, K et F sont alignés.