AlloSchool

Mathématiques: 2 Bac SPC-SVT-STE-STM

Séance 10 (Fonctions exponentielles)

Professeur: Mr CHEDDADI Haitam

Sommaire

I- La fonction exponentielle népérienne $f\left(x\right)=e^{x}$

- 1-1/ Définition
- 1-2/ Conséquences
- 1-3/ Propriétés
- II- Propriétés algébriques
- **III- Limites**

IV- Dérivée des fonctions
$$f\left(x
ight)=e^{x}$$
 et $f\left(x
ight)=e^{u\left(x
ight)}$

- 4-1/ Théorème 1
- 4-2/ Théorème 2
- V- Étude de la fonction $f(x) = e^x$

VI- Fonction exponentielle de base a avec $a\in]0,1[\cup]1,+\infty[$

- 6-1/ Définition
- 6-2/ Remarques
- 6-3/ Conséquences
- 6-4/ Propriétés
- 6-5/ La courbe représentative de $f\left(x\right)=a^{x}$ avec $a\in]0,1[\cup]1,+\infty[$

VII- Exercices

- 7-1/ Exercice 1
- 7-2/ Exercice 2
- 7-3/ Exercice 3
- 7-4/ Exercice 4
- 7-5/ Exercice 5

I- La fonction exponentielle népérienne $f\left(x ight)=e^{x}$

1-1/ Définition

La fonction f définie par $\left\{egin{aligned} f:]0,+\infty[& o\mathbb{R}\ x o f(x)=\ln x \end{aligned}
ight.$ est continue et

strictement croissante sur l'intervalle $]0,+\infty[$ d'où f admet une fonction réciproque f^{-1} .

On l'appelle fonction exponentielle népérienne et on la note par $f^{-1}=exp$ ou $f^{-1}=e\,$ avec :

$$\left\{ egin{aligned} f^{-1}:\mathbb{R}
ightarrow igl]0,+\inftyigl[& x
ightarrow f^{-1}\left(x
ight) =exp\left(x
ight) \end{aligned}
ight.$$

1-2/ Conséquences

La fonction exponentielle népérienne $f^{-1}=exp$ ou $f^{-1}=e$ est continue et strictement croissante sur $\mathbb R$, et la courbe de f et f^{-1} sont symétrique par rapport à la 1ère bissectrice (la droite d'équation y=x).

$$(\forall x \in \mathbb{R}) : e^x > 0$$

La relation entre $f\left(x
ight)=\ln\left(x
ight)$ et $f^{-1}=e^{x}$ est $\left(egin{array}{c} e^{x}=y \\ x\in\mathbb{R} \end{array}
ight)\Leftrightarrow \left(egin{array}{c} x=\ln y \\ y>0 \end{array}
ight).$

1-3/ Propriétés

$$\left(egin{array}{c} e^x = y \ x \in \mathbb{R} \end{array}
ight) \Leftrightarrow \left(egin{array}{c} x = \ln y \ y > 0 \end{array}
ight).$$

 $\forall x>0 \ : \ e^{\ln x}=x$

 $orall x \in \mathbb{R} \; : \; \ln\left(e^x
ight) = x$

 $\forall x \in \mathbb{R} \ : \ e^x > 0$

 $orall a,b\in\mathbb{R} \ : \ a=b\Leftrightarrow e^a=e^b$

 $orall a,b\in\mathbb{R}\ :\ a>b\Leftrightarrow e^a>e^b$

II- Propriétés algébriques

Soient $a,b,x\in\mathbb{R}$ et $r\in\mathbb{Q}.$

On a:

$$egin{aligned} e^{a+b} &= e^a imes e^b \ e^{-b} &= rac{1}{e^b} \ e^{a-b} &= rac{e^a}{e^b} \ \left(e^x
ight)^r &= e^{rx} \end{aligned}$$

$$\sqrt{e^x}=e^{rac{1}{2}x} \ \sqrt[n]{e^x}=e^{rac{1}{n}x}$$

III- Limites

$$egin{aligned} &\lim_{x o -\infty} e^x = 0^+ \ &\lim_{x o +\infty} e^x = +\infty \ &\lim_{x o +\infty} xe^x = 0^- \ &\lim_{x o -\infty} x^n e^x = 0 \ ; \ n \in \mathbb{N}^* \ &\lim_{x o +\infty} rac{e^x}{x^n} = +\infty \ &\lim_{x o +\infty} rac{e^x}{x^n} = 1 \end{aligned}$$

IV- Dérivée des fonctions $f\left(x ight)=e^{x}$ et $f\left(x ight)=e^{u\left(x ight)}$

4-1/ Théorème 1

La fonction $f(x)=e^x$ est dérivable sur $\mathbb R$, et on a : $orall x\in\mathbb R$: $(e^x)'=e^x$.

Preuve

4-2/ Théorème 2

Si la fonction $u\left(x\right)$ est dérivable sur un intervalle I, alors la fonction $f\left(x\right)=e^{u\left(x\right)}$ est dérivable sur I et sa fonction dérivée est : $f'\left(x\right)=\left[e^{u\left(x\right)}\right]'=u'\left(x\right)e^{u\left(x\right)}.$

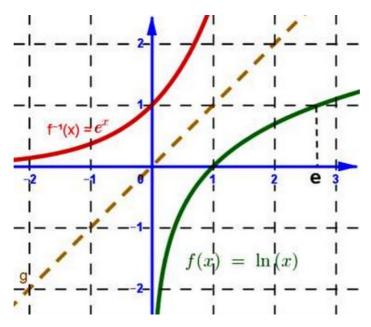
Exemples

V- Étude de la fonction $f\left(x\right)=e^{x}$

Le tableau de variation de f :

x	-∞	+∞
f'	+	
f		→
	0	

La courbe représentative de f :



VI- Fonction exponentielle de base a avec $a\in]0,1[\cup]1,+\infty[$

6-1/ Définition

Soit $a\in]0;1[\cup]1;+\infty[.$

La fonction définie par : $\forall x>0\;;\;\log_a{(x)}=\frac{\ln(x)}{\ln a}\;$ est continue et strictement monotone sur $]0;+\infty[.$

Donc elle admet une fonction réciproque f^{-1} , on l'appelle fonction exponentielle de base a et elle est définie par :

$$egin{aligned} f^{-1} &: \ \mathbb{R}
ightarrow iggl] 0; +\infty iggl[& x
ightarrow f^{-1} \left(x
ight) = exp_a \left(x
ight) \end{aligned}$$

Exemple

6-2/ Remarques

 $orall x \in \mathbb{R} \; ; \; e^{x \ln a} = a^x$

 $orall x \in \mathbb{R} \; ; \; \log_a{(a^x)} = x$

 $orall x>0 \ ; \ a^{\log_a(x)}=x$

 $\forall x \in \mathbb{R} \; ; \; 10^x = y \Leftrightarrow x = \log(y)$

6-3/ Conséquences

Soit $a\in]0;1[\cup]1;+\infty[$ et la fonction $f\left(x
ight) =a^{x}=e^{x\ln a}$

La fonction f est continue et dérivable sur l'intervalle $\mathbb R.$

$$f'(x) = (a^x)' = \ln a \times e^{x \ln a} = \ln a \times a^x$$

D'où le signe de f'(x) est le signe de $\ln a$.

Si 0 < a < 1, alors $f(x) = a^x = e^{x \ln a}$ est strictement croissante, d'où :

$$orall x, y \in \mathbb{R} \ : \ a^x < a^y \Leftrightarrow x > y$$

Si a>1, alors $f(x)=a^x=e^{x\ln a}$ est strictement décroissante, d'où : $orall x,y\in\mathbb{R}\ :\ a^x< a^y\Leftrightarrow x< y$

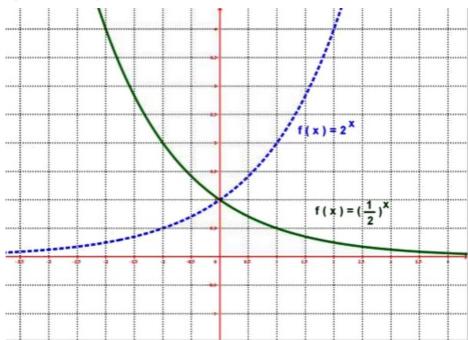
6-4/ Propriétés

Soit $a\in]0;1[\cup]1;+\infty[$ et $r\in \mathbb{Q}$ et $x,y\in \mathbb{R}$ On a :

$$a^x imes a^y=a^{x+y}\ (a^x)^y=a^{xy}\ rac{1}{a^x}=a^{-x}\ rac{a^x}{a^y}=a^{x-y}$$

Exemples

6-5/ La courbe représentative de $f\left(x\right)=a^{x}$ avec $a\in]0,1[\cup]1,+\infty[$



VII- Exercices

7-1/ Exercice 1

1. Simplifier les expressions suivantes :

$$A = (e^x + e^{-x})^2 - (e^x - e^{-x})^2$$

 $B = (e^x - 1)^2 (e^{2x} + 2e^x + 1)$

2. Montre que pour tout x de $\mathbb R$ on a :

$$\frac{e^{-x}-1}{e^{-x}+1} = \frac{1-e^{-x}}{e^x+1}$$
$$\frac{1}{e^x+1} = \frac{e^{-x}}{e^{-x}+1}$$

3. Résoudre dans ${\mathbb R}$ les équations suivantes :

$$egin{aligned} \textcircled{1} \, e^{2x} + e^x - 2 &= 0 \ \textcircled{2} \, e^{2x+1} + e^{x+1} - 2e &= 0 \ \textcircled{3} \, e^x - 2e^{-x} + 1 &= 0 \end{aligned}$$

4. Résolvez dans $\mathbb R$ les inéquations suivantes :

$$egin{array}{l} igg(e^{2x} + e^x - 2 < 0 \ igg(e^{2x} + 2e^x - 3 \geq 0 \ igg(\frac{e^x - 1}{e^x - 2} \geq 0 \ \end{array} igg)$$

7-2/ Exercice 2

Soit f la fonction définie sur $\mathbb R$ par : $f(x) = \left(e^{-x} - 1
ight)^2$

On désigne par $\left(C_f
ight)$ sa courbe représentative dans un repère orthonormé

$$\left(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j}
ight)$$
 (unité: $2cm$)

- 1. Calculer $\lim_{x \to +\infty} f(x)$ et interpréter graphiquement le résultat.
- 2. Montrer que l'axe des ordonnées est une direction parabolique de $\left(C_f\right)$ au voisinage de $-\infty$.
- 3. Montrer que : $(orall x \in \mathbb{R}) \; ; \; f'(x) = 2e^{-x} \, (1-e^{-x})$
- 4. Dresser le tableau de variation de f.
- 5. Montrer que $\left(C_f
 ight)$ admet un point d'inflexion .

Soit g la restriction de la fonction f sur $[0,+\infty[$

- 6. Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
- 7. Montrer que : $(orall x \geq 0) \; ; \; g^{-1} \left(x
 ight) = \ln \left(1 \sqrt{x}
 ight)$
- 8. Tracer (C_f) et $(C_{g^{-1}})$ dans le même repère.

7-3/ Exercice 3

Partie 1

Soit g la fonction définie sur \mathbb{R} par : $g\left(x
ight)=e^{x}-2x+2$

- 1. Calculer g'(x) pour tout $x \in \mathbb{R}$.
- 2. Étudier le signe de g'(x) pour tout $x \in \mathbb{R}$ et en déduire les variations de la fonction g (le calcul des limites n'est pas demandé).
- 3. En déduire que $g\left(x\right)>0$ pour tout $x\in\mathbb{R}.$

Partie 2

Soit f la fonction définie par : $f(x) = xe^{-x} + rac{x}{2} + 1$

- 4. Calculer $\lim_{x \to -\infty} f\left(x\right)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$ et interpréter le résultat graphiquement.
- 5. Calculer $\lim_{x\to +\infty}f(x)$ et $\lim_{x\to +\infty}\left[f(x)-\left(\frac{1}{2}x+1\right)\right]$ et interpréter le résultat graphiquement.
- 6. Étudier les positions relatives de la courbe $\left(C_f\right)$ et la droite (Δ) d'équation $y=\frac{1}{2}x+1.$
- 7. Montrer que $f'(x)=rac{g(x)}{2e^x}$ pour tout $x\in\mathbb{R}$.
- 8. Dresser le tableau de variations de f.
- 9. Montrer que l'équation $f\left(x\right)=0$ admet une solution unique lpha dans]-1;0[.
- 10. Déterminer l'équation de la tangente (T) à la courbe $\left(C_f\right)$ au point d'abscisse 0.
- 11. Calculer $f^{"}(x)$ pour tout $x\in\mathbb{R}$, puis déterminer le point d'inflexion de la courbe $ig(C_fig)$.
- 12. Tracer $\left(C_f\right)$ dans un repère orthonormé $\left(O,\stackrel{
 ightarrow}{i},\stackrel{
 ightarrow}{j}
 ight)$. (On prend epprox 2,7 et $rac{2}{e^2}pprox 0,27$).

7-4/ Exercice 4

Partie 1

Soit g la fonction définie sur $\mathbb R$ par : $g\left(x
ight)=e^{x}-x-1$

- 1. Calculer g'(x) pour tout $x \in \mathbb{R}$, puis étudier les variations de la fonction g.
- 2. En déduire que $g\left(x
 ight)>0$ pour tout $x\in\mathbb{R}^{st}.$
- 3. Montrer que $(\forall x>0)$; $\frac{e^x-1}{x}>1$ et que $(\forall x<0)$; $\frac{e^x-1}{x}<1$.
- 4. Montrer que $g(-x) = e^{-x} [1 + (x-1)e^x]$.
- 5. Déduire que $(\forall x \in \mathbb{R})$; $1+(x-1)e^x \geq 0$.

Partie 2

Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = x - 1 - rac{x}{e^x - x - 1}$

- 6. Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
- 7. Calculer $\lim_{x o 0^+} f(x)$ et $\lim_{x o 0^-} f(x)$.
- 8. Calculer $(\forall x \in \mathbb{R}^*): f'(x)$, puis dresser le tableau de variations de f.
- 9. Calculer $\lim_{x \to +\infty} \left[f\left(x
 ight) (x-1)
 ight]$ et interpréter graphiquement le résultat obtenu.
- 10. Calculer $\lim_{x \to -\infty} \left[f(x) x \right]$ et interpréter graphiquement le résultat obtenu.
- 11. Montrer que l'équation f(x)=0 admet une solution unique α dans]-2;-1[et une solution unique β dans l'intervalle]1;2[.

- 12. Déduire que $e^{\alpha} \alpha 1 = \frac{\alpha}{\alpha 1}$.
- 13. Tracer $\left(C_f\right)$ dans un repère orthonormé $\left(O,\stackrel{
 ightarrow}{i},\stackrel{
 ightarrow}{j}
 ight)$ (On prends lpha=-1,3 et eta=1,6)

Partie 3

Soit
$$\left(u_{n}
ight)_{n\in\mathbb{N}}$$
 la suite définie par : $\left\{egin{align*} u_{0}=1 \\ u_{n+1}=g\left(u_{n}
ight) \end{array}
ight.;\;\left(orall n\in\mathbb{N}
ight)$

- 14)Montrer par récurrence que $(\forall n \in \mathbb{N}) : 0 \leq u_n \leq 1$.
- 15)Montrer que la suite (u_n) est décroissante.
- 16)Montrer que la suite (u_n) est convergente et déterminer sa limite.

7-5/ Exercice 5

Partie I

Soit g la fonction définie sur $\mathbb R$ par : $g(x)=1-(x+1)e^{-x}$

- 1. Montrer que : $(\forall x \in \mathbb{R}) \ g'(x) = xe^{-x}$
- 2. Montrer que g est croissante sur $[0;+\infty[$ et décroissante sur $]-\infty;0].$
- 3. Calculer g(0) et en déduire que $(\forall x \in \mathbb{R}) \ g\left(x\right) \geq 0$.

Partie II

Soit f la fonction définie sur $\mathbb R$ par : $f(x)=x-1+(x+2)e^{-x}$

Soit (C) la courbe représentative de f dans un repère orthonormé $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$

(unité : 2 cm)

- 1. Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$.
- 2. Montrer que la droite (D) d'équation y=x-1 est asymptote à (C) au voisinage de $+\infty$, et montrer que (C) est au-dessus de (D) sur $[-2;+\infty[$ et en dessous de (D) sur $]-\infty;-2]$.
- 3. Montrer que $\lim_{x\to -\infty} \frac{f(x)}{x} = +\infty$, puis donner une interprétation géométrique de ce résultat.
- 4. Montrer que : $(\forall x \in \mathbb{R}) \ f'(x) = g(x)$
- 5. Dresser le tableau de variations de f.
- 6. Montrer que l'équation f(x)=0 admet une solution unique lpha dans $\mathbb R$, et en admettant que $e\sqrt{e}<5$ montrer que $-\frac32<lpha<-1$.
- 7. Montrer que I(0,1) est le point d'inflexion pour la courbe (C).
- 8. Montrer que y=1 est l'équation de la tangente au point I(0,1) à la courbe (C).

- 9. Construire dans le repère $\left(O,\stackrel{\rightarrow}{i},\stackrel{\rightarrow}{j}\right)$ la droite (D) et la courbe (C).
- 10. En utilisant une intégration par partie montrer que :

$$\int_0^1 (x+2)e^{-x} \, \mathrm{d} \, x = 3 - \frac{4}{e}$$

11. Calculer, en cm^2 , l'aire du domaine limité par la courbe (C) et les droites d'équations y=x-1 et x=0 et x=1.

7-6/ Exercice 6

Partie I

On considère la fonction g définie par : $g(x)=1-(x+1)e^x$

- 1. Dresser le tableau de variation de g.
- 2. Calculer g(0).
- 3. En déduire le signe de g(x).

Partie II

Soit f la fonction définie sur $\mathbb R$ par : $f(x)=x\,(1-e^x)$

On désigne par (\mathscr{C}_f) sa courbe représentative dans un repère orthonormé $\left(O,\stackrel{\to}{i},\stackrel{\to}{j}\right)$.

- 1. Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
- 2. Montrer que la droite (D): y=x est une asymptote oblique à (\mathscr{C}_f) au voisinage de $-\infty$, et préciser la position relative de (D) et (\mathscr{C}_f) .
- 3. Montrer que (\mathscr{C}_f) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique l'axe des ordonnées.
- 4. Montrer que : $(orall x \in \mathbb{R}) \ f'(x) = g(x)$
- 5. Dresser le tableau de variation de f.
- 6. Montrer que (\mathscr{C}_f) admet un point d'inflexion I dont on déterminera ses coordonnées.
- 7. Construire (D) et (\mathscr{C}_f) .

Partie III

On considère la suite (u_n) définie par $u_0=1$ et $u_{n+1}=f\left(u_n
ight)$ pour tout $n\in\mathbb{N}.$

- 1. Montrer que pour tout $n\in\mathbb{N}$ on a : $-1\leq u_n\leq 0$
- 2. Déterminer la monotonie de la suite (u_n) , puis en déduire qu'elle est convergente.
- 3. Calculer la limite de la suite (u_n) .