

Mathématiques : 2Bac Eco-SGC

Séance 1 (Limites (Rappel))

Professeur: Mr ETTOUHAMY Abdelhak

Sommaire

I- Limites usuelles
II- Limite d'une fonction polynomiale
2-1/ Propriété 1
2-2/ Propriété 2
III- Limite d'une fonction rationnelle
3-1/ Propriété 1
3-2/ Propriété 2
IV- Limite d'une fonction irrationnelle
V- Opérations sur les limites
5-1/ Limite de la somme de deux fonctions
5-2/ Limite du produit de deux fonctions
5-3/ Limite du quotient de deux fonctions
VI- Limites et ordre
6-1/ Théorème 1
6-2/ Théorème des gendarmes
VII- Exercices
7-1/ Exercice 1
7-2/ Exercice 2
7-3/ Exercice 3
7-4/ Exercice 4
7-5/ Exercice 5
7-6/ Exercice 6

I- Limites usuelles

Soit $n \in \mathbb{N}^*$, on a:

$$egin{align*} \lim_{x o +\infty} ax^n &= (signe\ de\ a)\infty \ \lim_{x o -\infty} ax^n &= (signe\ de\ -a)\infty\ si\ n\ est\ impair \ \lim_{x o -\infty} ax^n &= (signe\ de\ a)\infty\ si\ n\ est\ pair \ \lim_{x o +\infty} rac{1}{x^n} &= 0 \ \lim_{x o +\infty} \sqrt{x} &= +\infty \end{aligned}$$

Exemples

II- Limite d'une fonction polynomiale

2-1/ Propriété 1

Si f est une fonction polynomiale, alors $\lim_{x \to a} f(x) = f(a)$

Exemple

2-2/ Propriété 2

La limite d'un polynôme en ∞ est celle de son terme de plus haut degré

Exemples

III- Limite d'une fonction rationnelle

3-1/ Propriété 1

La limite d'une fonction rationnelle en ∞ est celle du quotient des termes de plus haut degré

3-2/ Propriété 2

Soit une fonction rationnelle tel que: $f(x) = \frac{p(x)}{q(x)}$

On a:
$$\lim_{x \to a} f(x) = \frac{p(a)}{q(a)}$$

Si p(a) = q(a) = 0 (càd a est une racine de p(x) et q(x)), alors

$$\lim_{x o a}f\left(x
ight)=\lim_{x o a}rac{(x-a)p_1(a)}{(x-a)q_1(a)}=\lim_{x o a}rac{p_1(a)}{q_1(a)}$$

IV- Limite d'une fonction irrationnelle

4-1/ Propriété 1

Si
$$\lim_{x\to?} f(x) = a$$
 avec $(a \ge 0)$, alors $\lim_{x\to?} \sqrt{f(x)} = \sqrt{a}$

Si
$$\lim_{x \to ?} f(x) = +\infty$$
, alors $\lim_{x \to ?} \sqrt{f(x)} = +\infty$

V- Opérations sur les limites

5-1/ Limite de la somme de deux fonctions

a désigne un nombre réel ou $+\infty$ ou $-\infty$, L et M sont deux nombres réels.

$\lim_{x ightarrow a}f\left(x ight)$	$oldsymbol{L}$	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x ightarrow a}g\left(x ight)$	M	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x ightarrow a}\left(f\left(x ight) +g\left(x ight) ight)$	L+M	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I

5-2/ Limite du produit de deux fonctions

a désigne un nombre réel ou $+\infty$ ou $-\infty$, L et M sont deux nombres réels.

$\lim_{x o a}f\left(x ight)$	L	L eq 0	∞	0
$\lim_{x ightarrow a}g\left(x ight)$	M	∞	∞	∞
$\lim_{x o a}\left(f\left(x ight) imes g\left(x ight) ight)$	L imes M	∞	∞	F.I

5-3/ Limite du quotient de deux fonctions

a désigne un nombre réel ou $+\infty$ ou $-\infty$, L et M sont deux nombres réels.

$\lim_{x o a}f\left(x ight)$	L	L eq 0	∞	∞	0
$\lim_{x o a}g\left(x ight)$	M eq 0	0	M	∞	0
$\lim_{x o a} \left(rac{f(x)}{g(x)} ight)$	$\frac{L}{M}$	∞	∞	F.I	F.I

VI- Limites et ordre

6-1/ Théorème 1

Soient f et g deux fonctions définies sur un intervalle I.

$$\mathrm{Si}\,\left(\forall x\in I\right);\,f\left(x\right)\geq g\left(x\right)\,\,\mathrm{et}\,\lim_{x\rightarrow a}g\left(x\right)=+\infty\,\,\mathrm{alors}\,\lim_{x\rightarrow a}f\left(x\right)=+\infty$$

Si
$$(\forall x \in I)$$
; $f(x) \leq g(x)$ et $\lim_{x \to a} g(x) = -\infty$ alors $\lim_{x \to a} f(x) = -\infty$

6-2/ Théorème des gendarmes

Soient f et g et h trois fonctions définies sur un intervalle I et k un réel.

$$\mathrm{Si}\,\left(\forall x\in I\right);\,g\left(x\right)\leq f\left(x\right)\leq h\left(x\right)\,\,\mathrm{et}\,\lim_{x\rightarrow a}g\left(x\right)=\lim_{x\rightarrow a}h\left(x\right)=k\,\,\mathrm{alors}\,\lim_{x\rightarrow a}f\left(x\right)=k$$

Lemme

$$\mathrm{Si}\,\left(\forall x\in I\right);\,\,\left|f\left(x\right)-k\right|\leq g\left(x\right)\,\,\mathrm{et}\,\lim_{x\rightarrow a}g\left(x\right)=0\,\,\mathrm{alors}\,\lim_{x\rightarrow a}f\left(x\right)=k$$

Exemples

VII- Exercices

7-1/ Exercice 1

Calculer les limites suivantes :

$$A = \lim_{x o +\infty} 2x^3 + x^2 - x + 1 \ B = \lim_{x o +\infty} 2x + 5x^2 - 7x^3 \ C = \lim_{x o -\infty} 3x^2 + x - 3 \ D = \lim_{x o -\infty} 2x^3 - x^2 + x \ E = \lim_{x o +\infty} rac{2x^3 - x^2 + x}{x - 10x^2 + 7x^3} \ F = \lim_{x o -\infty} rac{2x^2 + x - 1}{(x - 1)^2} \ G = \lim_{x o 2} rac{x - 4}{(2x - 3)^3}$$

7-2/ Exercice 2

Calculer les limites suivantes :

$$A = \lim_{x o 1} rac{x^3 + 1}{(x - 1)^2} \ B = \lim_{x o 1^+} rac{3x + 1}{x^2 + x - 2} \ C = \lim_{x o 1} rac{x^2 - x}{2x^2 + 2x - 4} \ D = \lim_{x o 1} rac{x^2 - x}{2x^2 + 2x - 4} \ E = \lim_{x o 1} rac{x^2 - 3x + 2}{x^2 - 9x + 8}$$

7-3/ Exercice 3

Calculer les limites suivantes :

$$A = \lim_{x \to 4} \frac{x-4}{\sqrt{x+5}-3}$$

$$B = \lim_{x \to -1} \frac{\sqrt{x+5}-2}{1+x}$$

$$C = \lim_{x \to 2} \frac{\sqrt{4x+1}-3}{x^2-3x+2}$$

$$D = \lim_{x \to -1} \frac{3x^2-x-4}{\sqrt{x+5}-2}$$

7-4/ Exercice 4

Calculer les limites suivantes :

$$A = \lim_{x o +\infty} x - \sqrt{x}$$
 $B = \lim_{x o -\infty} \sqrt{x^4 - 2x^3 + 1} - x$ $C = \lim_{x o +\infty} x - \sqrt{x^2 + 1}$ $D = \lim_{x o +\infty} 2x - \sqrt{x^2 + 3}$

7-5/ Exercice 5

Soit
$$f$$
 une fonction Définie par :
$$\begin{cases} f(x)=\frac{3x^2-4x-4}{x^2-x-2}\;;\;x>2\\ f(x)=\frac{\sqrt{x^2+5}-3}{\sqrt{x+2}-2}\;;\;x<2\\ f(2)=\frac{8}{3} \end{cases}$$

1. Déterminer D_f l'ensemble de définition de f.

2. Calculer les limites suivantes : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to 2} f(x)$.

7-6/ Exercice 6

Soit f une fonction Définie par : $\begin{cases} f(x) = rac{x^2 - 6x + 5}{x - 5} \; ; \; x
eq 5 \\ f(5) = 4 \end{cases}$

- 1. Déterminer puis calculer $\lim_{x\to 5} f(x)$.
- 2. Montrer que f est dérivable en $x_0 = 5$.
- 3. Déterminer l'équation de (T) la tangente à $\left(\mathcal{C}_f\right)$ en 5.