

Mathématiques: 2Bac Eco-SGC

Séance 3 (Continuité - Partie 2)

Professeur: Mr ETTOUHAMY Abdelhak

Sommaire

I- Théorème des valeurs intermédiaires

- 1-1/ Théorème
- 1-2/ Méthode dichotomie

II- La fonction réciproque

- 2-1/ Propriété 1
- 2-2/ Propriété 2

III- Exercices

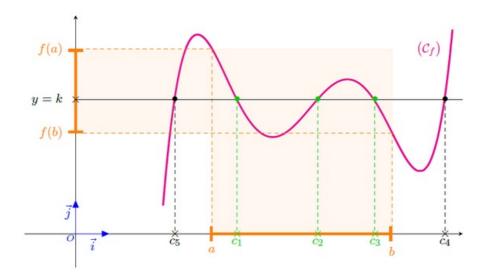
- 3-1/ Exercice 1
- 3-2/ Exercice 2
- 3-3/ Exercice 3
- 3-4/ Exercice 4
- 3-5/ Exercice 5
- 3-6/ Exercice 6

I- Théorème des valeurs intermédiaires

1-1/ Théorème

Si f est une fonction continue sur un intervalle [a;b] et k un réel quelconque compris entre f(a) et f(b), alors il existe au moins un réel c dans [a;b] tel que f(c)=k

Géométriquement



Exemple

Conséquence 1

f est continue sur l'intervalle [a;b] et $f(a) \times f(b) \leq 0$, alors l'équation f(x)=0 admet au moins une solution dans l'intervalle [a;b].

Exemple

Conséquence 2

Si f est continue et strictement monotone sur l'intervalle [a;b] et $f(a) \times f(b) \leq 0$, alors l'équation f(x) = 0 admet une solution unique dans l'intervalle [a;b].

Exemple

1-2/ Méthode dichotomie

Si f une fonction numérique continue et strictement monotone sur un intervalle [a;b] et $f(a)\times f(b)\leq 0$, alors l'équation f(x)=0 admet une unique solution α dans l'intervalle [a;b]

L'algorithme de la méthode dichotomie

On détermine $\,f\left(c
ight)$ l'image de centre $\,$ du $\left[a;b
ight]$ tel que $c=rac{a+b}{2}$

- ullet Si $f\left(a
 ight) imes f\left(c
 ight)\leq 0$ alors $lpha\in\left[a;c
 ight]$
- ullet Si $f\left(c
 ight) imes f\left(b
 ight)\leq 0$ alors $lpha\in\left[c;b
 ight]$

On reprend les mêmes étapes sur l'intervalle qui contient α jusqu'à avoir un encadrement d'amplitude convenable

.Exemple:

II- La fonction réciproque

2-1/ Propriété 1

Si f est continue et strictement monotone sur intervalle I, alors f admet une fonction réciproque notée f^{-1} et définie de $J=f\left(I\right)$ vers I telle que :

$$\forall x \in f(I) \; ; \; \forall y \in I \; ; \; f^{-1}(x) = y \Leftrightarrow f(y) = x$$

Exemple

2-2/ Propriété 2

Si f est continue et strictement monotone sur un intervalle I, alors f admet f^{-1} définie sur $J=f\left(I\right)$ et on a :

- f^{-1} est continue sur $J=f\left(I\right)$
- f^{-1} est strictement monotone sur $J=f\left(I\right)\,$ et elle a le même sens de variation que fsur I.
- Les courbes représentatives de f et f^{-1} dans un repère orthonormé sont symétrique par rapport à la droite d'équation y=x (la première bissectrice du repère).

III- Exercices

3-1/ Exercice 1

f est la fonction définie sur ${\mathbb R}$ par :

$$f\left(x\right) = x^3 + 4x - 1$$

- 1. Étudier les variations de f
- 2. Déduire que l'équation $f\left(x\right)=0$ admet une seule solution a dans $\left[2;3\right]$
- 3. Déterminer un encadrement de a d'amplitude 0,5

3-2/ Exercice 2

A- Soit f la fonction définie sur $[0;+\infty[$ par $:f(x)=x^2+1$

- 1. Montrer que $\,f\,$ admet une fonction réciproque
- 2. Déterminer l'expression de $f^{-1}(x)$

B- Soit g la fonction définie sur $]0;+\infty[$ par $:g\left(x
ight) =1-rac{1}{x}$

- 1. Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer.
- 2. Calculer $g^{-1}\left(-1\right)$ sans déterminer l'expression de $g^{-1}\left(x\right)$.

3-3/ Exercice 3

C- Soit f la fonction définie sur $]1;+\infty[$ par $:f(x)=rac{2x+3}{x-1}$

- 1. Montrer que $\,f\,$ admet une fonction réciproque $\,f^{-1}\,$ définie sur un intervalle $\,J\,$ à déterminer.
- 2. Déterminer l'expression de $f^{-1}\left(x
 ight)$ pout tout $x\in J$

3-4/ Exercice 4

Soit f la fonction définie sur \mathbb{R}^+ par : $f(x) = \sqrt{x} + x^2 - 4$

- 1. Montrer que f est continue et strictement croissante sur \mathbb{R}^+ .
- 2. En déduire que f réalise une bijection de \mathbb{R}^+ sur lui-même.
- 3. Montrer que l'équation f(x)=0 admet une unique solution α dans $[0;+\infty[$, et que $1,6<\alpha<1,7.$

3-5/ Exercice 5

Soit f la fonction définie sur $I=[1;+\infty[$ par $:f(x)=x^2+2x-4$

- 1. Montrer que f est continue et strictement croissante sur I.
- 2. En déduire que f admet une fonction réciproque f^{-1} définie sur l'intervalle J à déterminer vers I.
- 3. Déterminer $f^{-1}(x), \ \forall x \in J$.

3-6/ Exercice 6

Soit f la fonction définie sur $]1;+\infty[$ par $:f(x)=rac{2x+3}{x-1}$

- 1. Montrer que f admet une fonction réciproque f^{-1} définie sur l'intervalle J à déterminer.
- 2. Déterminer $f^{-1}(x), \ \forall x \in J$.