

Physique et Chimie: 2ème Année Bac

Séance 10 (Dipôle RC)

Professeur: Mr El GOUFIFA Jihad

Sommaire

I- Le condensateur

- 1-1/ Définition
- 1-2/ Charge d'un condensateur
- 1-3/ Décharge d'un condensateur
- 1-4/ Relation entre charge q(t) et intensité du courant i(t)
- 1-5/ Relation entre charge q(t) et tension U(t) (Capacité du condensateur)
- 1-6/ Relation entre i, C et U

II- L'association des condensateurs

- 2-1/ Association en série
- 2-2/ Association en parallèle

III- Dipôle RC

- 3-1/ définition
- 3-2/ réponse d'un Dipôle RC à un échelon montant de tension (Charge du condensateur)
- 3-3/ Réponse d'un Dipôle RC à un échelon descendant de tension (Décharge du condensateur)
- 3-4/ Charge et décharge périodiques

IV- Énergie emmagasinée dans un condensateur

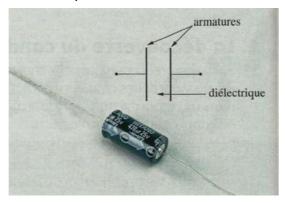
V- Exercices

- 5-1/ Exercice 1
- 5-2/ Exercice 2
- 5-3/ Exercice 3
- 5-4/ Exercice 4

I- Le condensateur

1-1/ Définition

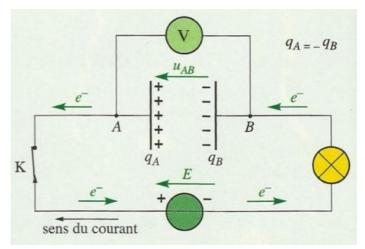
Un condensateur est un composant électrique, formé de deux armatures métalliques en face l'une de l'autre et séparées par un isolant appelé le diélectrique (air, papier, céramiques...).



1-2/ Charge d'un condensateur

Expérience

On utilise un générateur de tension continue de tension E et on réalise le montage suivant :



Observation

On ferme l'interrupteur K.

On observe que l'ampèremètre indique le passage d'un courant électrique durant un temps très court et que le voltmètre indique que la tension aux bornes du condensateur $U_{AB}=E.$

On dit que le condensateur est chargé et le courant électrique qui passe dans le circuit s'appelle courant de charge.

Interprétation

Le courant de charge résulte d'un déplacement des électrons de l'armature A vers l'armature B du condensateur, et à cause de l'existence du diélectrique entre les armatures, les électrons s'accumulent sur l'armature B.

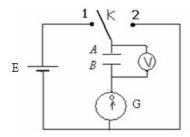
L'armature A perd le même nombre d'électrons gagnés par l'armature B et condensateur devient chargé.

On appelle charge "q" du condensateur, la valeur absolue de la quantité d'électricité que porte chaque armature: $q=q_A=-q_B$

Une fois chargé, le condensateur conserve la charge électrique "q" sur ses armatures et la tension $U_{AB}=E$ entre ses bornes, même lorsqu'on le débranche.

1-3/ Décharge d'un condensateur

Expérience



Observation

On bascule l'interrupteur K à la position (2).

Le voltmètre indique une annulation rapide de la tension aux bornes du condensateur.

Interprétation

En déplaçant l'interrupteur à la position (2) on relie les armatures entre elles.

Les électrons accumulés sur l'armature B reviennent à l'armature A et un courant de décharge apparaît dans le circuit dans le sens inverse du courant de charge.

1-4/ Relation entre charge q(t) et intensité du courant i(t)

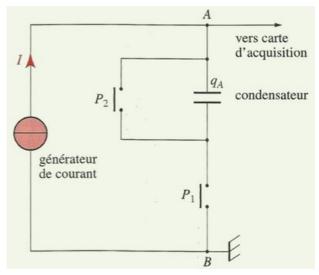
Par définition, l'intensité i du courant correspond au débit de charges transportées, c'est-à-dire à la charge électrique transportée par unité de temps :

$$i(t) = \frac{dq(t)}{dt}$$

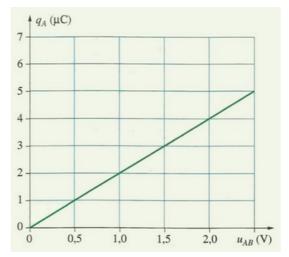
La charge électrique q(t) est une fonction du temps dont i(t) est la dérivée. Cette relation est valable aussi bien lors de la charge que lors de la décharge.

1-5/ Relation entre charge q(t) et tension U(t) (Capacité du condensateur)

On réalise le montage de la figure ci-dessous en utilisant un générateur de courant (qui débite un courant électrique constant quelle que soit la tension entre ses bornes) :



On obtient la courbe suivante :



La charge q d'un condensateur est proportionnelle à la tension U entre ses armatures : $q = a \times U$.

Ce coefficient de proportionnalité a, toujours positif, est appelé capacité du condensateur et on le note C.

$$q(t) = C.U(t)$$

La capacité C d'un condensateur dépend de :

- Surface des armatures
- son épaisseur
- nature de l'isolant
- Distance entre les armatures
- Matière de l'armature

1-6/ Relation entre i, C et U

$$\left\{ egin{aligned} \mathbf{q} &= \mathbf{C} imes \mathbf{U} \ \mathbf{i} &= rac{\mathrm{d}\mathbf{q}}{\mathrm{d}\mathbf{t}} \end{aligned}
ight. \Rightarrow \left. \mathbf{i} \left(\mathbf{t}
ight) = \mathbf{C} imes rac{\mathrm{d}\mathbf{U} \left(\mathbf{t}
ight)}{\mathrm{d}\mathbf{t}}
ight.$$

II- L'association des condensateurs

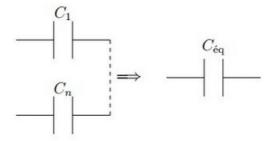
2-1/ Association en série

$$\begin{array}{c|c} C_1 & C_n & C_{\text{\'eq}} \\ \hline \end{array} \longrightarrow \begin{array}{c|c} C_{\text{\'eq}} & \hline \end{array}$$

Puisque le montage est en série alors :

$$\begin{cases} U = U_1 + U_2 + \ldots + U_n \\ i = i_1 = i_2 = \ldots = i_n \\ \Rightarrow U_{eq} = \sum_{c} U_i \\ \Rightarrow \frac{q}{C_{eq}} = \sum_{c} \frac{q}{C_i} \\ \Rightarrow \frac{1}{C_{eq}} = \sum_{c} \frac{1}{C_i} \end{cases}$$

2-2/ Association en parallèle



Puisque le montage est en parallèle alors :

$$\left\{egin{aligned} \mathbf{U} = \mathbf{U}_1 = \mathbf{U}_2 = \ldots = \mathbf{U}_{\mathrm{n}} \ \mathbf{i} = \mathbf{i}_1 + \mathbf{i}_2 + \ldots + \mathbf{i}_{\mathrm{n}} \ \Rightarrow \mathbf{q}_{\mathrm{eq}} = \sum \mathbf{q}_{\mathrm{i}} \ \Rightarrow \mathbf{C}_{\mathrm{eq}}.\ \mathbf{U} = \sum \mathbf{C}_{\mathrm{i}}.\ \mathbf{U} \ \Rightarrow \mathbf{C}_{\mathrm{eq}} = \sum \mathbf{C}_{\mathrm{i}} \end{aligned}
ight.$$

III- Dipôle RC

3-1/ définition

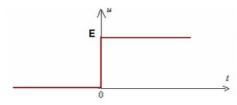
Un dipôle RC est l'association en série d'un conducteur ohmique de résistance R et d'un condensateur de capacité C.

$$A \stackrel{i}{\longrightarrow} R$$

3-2/ réponse d'un Dipôle RC à un échelon montant de tension (Charge du condensateur)

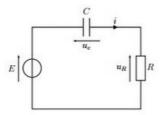
Échelon de tension

On dit qu'un dipôle est soumis à un échelon montant de tension, si la tension entre ses bornes varie instantanément d'une valeur nulle à une valeur constante E.



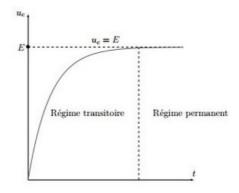
Étude expérimentale

Soit le circuit suivant :



Sur l'oscilloscope on obtient la courbe qui comporte deux régimes :

- 1. Régime transitoire : dans lequel la tension aux bornes du condensateur croît depuis la valeur 0.
- 2. Régime permanent : dans lequel la tension reste pratiquement constante. Lorsque $t \to \infty$, u_c tend vers E.



Équation différentielle

D'après la loi d'additivité des tensions on a :

$$E=u_c+u_R \ E=u_c+R.i \ E=u_c+Rrac{dq}{dt} \ E=u_c+RCrac{du_c}{dt}$$

Donc on en déduit l'équation suivante :

$$u_{c} + au rac{du_{c}}{dt} = E$$

au=RC : Constante du temps

C'est une équation différentielle d'inconnue uc, dont la solution s'écrit sous la forme suivante :

$$u_c(t) = A.e^{-\lambda t} + B$$

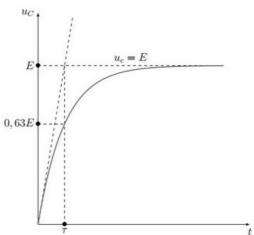
$$\lambda = rac{1}{BC} = rac{1}{ au}~;~B = E~;~A = -E$$

Donc la solution de l'équation différentielle est :

$$\mathrm{u_{c}}\left(\mathrm{t}
ight)=\mathrm{E.}\left(1-\mathrm{e}^{-rac{\mathrm{t}}{ au}}
ight)$$

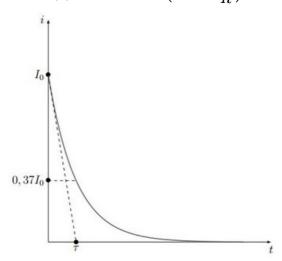
Détermination graphique de la valeur de au

$$t= au \ \Rightarrow u_c=E\left(1-e^{-1}
ight)pprox 0,63E$$



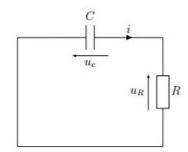
Expression de l'intensité du courant dans le circuit

$$egin{aligned} i\left(t
ight) &= Crac{du_c}{dt} \ i\left(t
ight) &= Crac{d}{dt}\left(E\left(1-e^{-rac{t}{ au}}
ight)
ight) \ i\left(t
ight) &= Crac{E}{ au}e^{-rac{t}{ au}} \ i\left(t
ight) &= rac{E}{R}e^{-rac{t}{ au}} \ i\left(t
ight) &= I_0e^{-rac{t}{ au}} \ \left(I_0 &= rac{E}{R}
ight) \end{aligned}$$



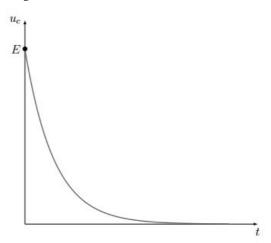
3-3/ Réponse d'un Dipôle RC à un échelon descendant de tension (Décharge du condensateur)

Soit le circuit suivant :



Sur un oscilloscope on obtient la courbe qui comporte deux régimes :

- Régime transitoire : dans lequel la tension uc décroît depuis sa valeur initiale.
- Régime permanent : dans lequel la tension uc reste pratiquement nulle, lorsque $t o \infty$ alors $u_c o \infty$



Équation différentielle

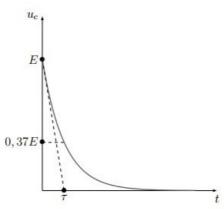
$$\mathrm{u_c} + au rac{\mathrm{du_c}}{\mathrm{dt}} = 0$$

C'est une équation différentielle d'inconnue u_c , dont la solution s'écrit sous la forme suivante :

$$u_{c}\left(t\right)=E.\,e^{-rac{t}{ au}}$$

Détermination graphique de la valeur de au

$$t= au \ \Rightarrow u_c=E.\,e^{-1}pprox 0,37E$$

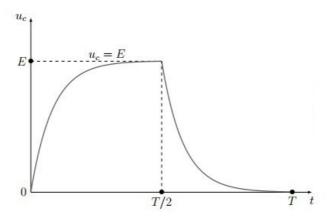


Expression de l'intensité du courant dans le circuit

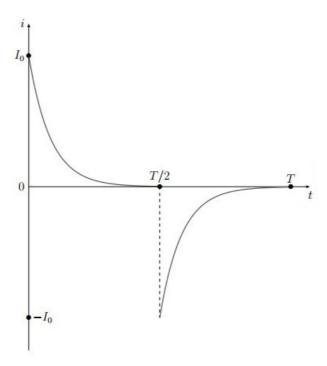
$$i\left(t
ight) = Crac{du_c}{dt}$$
 $i\left(t
ight) = Crac{d}{dt}\left(E.e^{-rac{t}{ au}}
ight)$
 $i\left(t
ight) = -C.rac{E}{ au}e^{-rac{t}{ au}}$
 $i\left(t
ight) = -rac{E}{R}e^{-rac{t}{ au}}$
 $i\left(t
ight) = -I_0e^{-rac{t}{ au}}\left(I_0 = rac{E}{R}
ight)$

3-4/ Charge et décharge périodiques

Courbe de la tension



Courbe du courant



IV- Énergie emmagasinée dans un condensateur

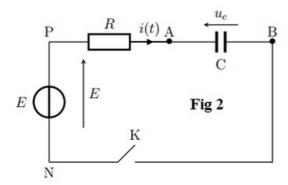
Soit E_c l'énergie électrique emmagasinée dans un condensateur.

$$E_c = \frac{1}{2}$$
. C. $u_c^2 = \frac{1}{2}$. $\frac{q^2}{C}$

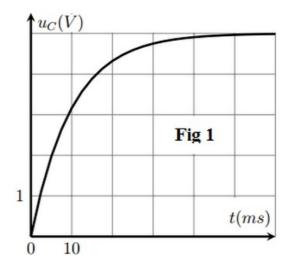
V- Exercices

5-1/ Exercice 1

Un condensateur initialement déchargé, de capacité C, est branché en série avec un conducteur ohmique de résistance $R=10K\Omega$:



La tension aux bornes du générateur est E=5,00V. À l'instant ${\bf t}={\bf 0}$, on ferme le circuit. La tension $u_C(t)$, enregistrée au cours de la charge, est représentée graphiquement :



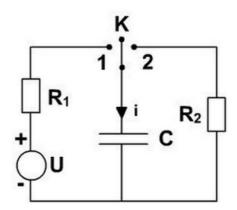
1. Établir l'équation différentielle de la tension uc aux bornes du condensateur lors de se charge.

La solution de l'équation différentielle est la suivante : $u_C(t) = A\left(1 - e^{-lpha.t}
ight)$

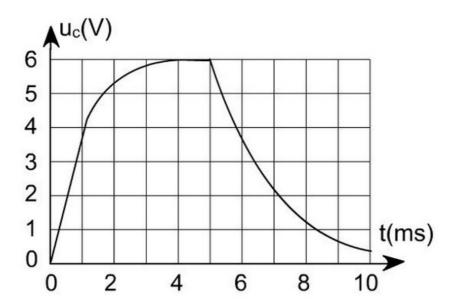
- 2. Déterminer A et α en fonction de E, R et C
- 3. Exprimer la constante de temps au en fonction de lpha, calculer u_C pour t= au
- 4. Déterminer la valeur numérique de τ à l'aide de graphique (préciser la méthodes utilisé)
- 5. Déterminer la capacité ${\it C}$ de condensateur

5-2/ Exercice 2

À l'aide d'un générateur de tension idéale, de deux résistors et d'un condensateur, on réalise le montage représenté par le figure ci-dessous :



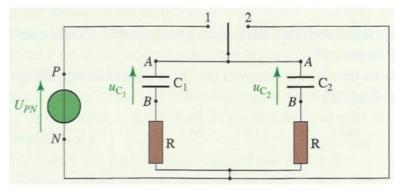
À l'aide d'un oscilloscope, on enregistre la charge d'un condensateur de capacité C à travers le résistor de résistance $R_1=20\Omega$ puis sa décharge à travers le résistor de résistance R_2 on obtient le digramme suivant :



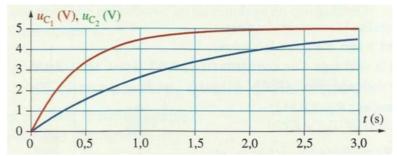
- 1. Expliquer comment doit-on procéder pour obtenir l'oscillogramme précédent.
- 2. Donner la valeur de la tension du générateur U.
- 3. Déterminer la valeur de C et de R_2 .
- 4. $U_{c}\left(t
 ight)$ présente-t-elle une discontinuité en passant de la charge à la décharge ?
- 5. Qu'en est-il de l'intensité du courant i(t) qui parcourt le circuit ?

5-3/ Exercice 3

Le montage du document ci-dessous permet, lorsque le commutateur est en position 1, de charger simultanément deux condensateurs de capacités ${\cal C}_1$ et ${\cal C}_2$.



Les deux conducteurs ohmiques ont la même résistance $R=2,2K\Omega$ Un système d'acquisition permet d'enregistrer l'évolution des tensions $u_{c_1}\left(t\right)$ et $u_{c_2}\left(t\right)$:



1. Les deux condensateurs sont-ils chargés à la fin de l'acquisition ?

2. En déduire la valeur de la tension aux bornes du générateur.

La tension $u_c(t)$ aux bornes d'un condensateur lors de la charge est : $u_c(t) = E_c(1 - e^{-\frac{t}{c}})$ avec E la tension aux bornes du générateur

 $u_{c}\left(t
ight)=E.\left(1-e^{-rac{t}{ au}}
ight)$ avec E la tension aux bornes du générateur.

- 3. Quelle est la valeur de la tension $u_{c}\left(au\right)$?
- 4. Déterminer les constantes de temps au_1 et au_2 de chacun des dipôles (R,C_1) et (R,C_2) .
- 5. Quelles sont les capacités C_1 et C_2 des condensateurs ?
- 6. Plus la capacité d'un condensateur est grande, plus il se charge rapidement : Cette proposition est-elle correcte ?

5-4/ Exercice 4

On considère le circuit électrique suivant qui est constitué par un générateur idéal de courant électrique qui débite un courant d'intensité I=100A, un condensateur gigantesque de capacité très grand C=1800F est initialement déchargé, un conducteur ohmique de résistance $R=2\Omega$ et un interrupteur K à deux position (1) et (2) (Doc 1).

À la date t = 0, l'interrupteur est basculé en position 1.

Le condensateur se charge et à l'aide d'un dispositif informatisé on obtient la courbe représentée au (Doc 2) :



- 1. Déterminer la date t_1 où la tension u_c peut prendre la valeur $U_1=2V$.
- 2. Calculer l'énergie électrique E_e emmagasinée dans le condensateur à l'instant t_1 .

À l'instant $t=t_1$ on bascule l'interrupteur K en position 2, le condensateur se décharge à travers le conducteur ohmique jusqu'à l'instant t_2 auquel $U_2=1,5V$

L'équation de la tension u_c en fonction de ${\sf t}$ est :

$$u_{c}\left(t
ight) =A+B.\,e^{\left(-rac{\left(t-t_{1}
ight) }{ au}
ight) }$$

- 3. Déterminer A,B et τ .
- 4. Calculer la date t_2 où la tension prend la valeur U_2

On suppose que la décharge du condensateur se fait sans perte d'énergie .

- 5. Calculer l'énergie dissipée par effet Joule E_R dans le conducteur ohmique R entre les instants t_1 et t_2 .
- 6. En déduire la puissance moyenne \mathscr{P}_R dissipée par effet Joule dans le conducteur ohmique entre les instants t_1 et t_2 .