

Physique et Chimie : 1ère Année Collège

Séance 3 (Mesure du volume des solides et des liquides)

Professeur: Mr El GOUFIFA Jihad

Sommaire

I- Le volume

- 1-1/ Définitions
- 1-2/ Unités de mesure
- II- Mesure du volume d'un liquide
- 2-1/ Instruments de mesure
- 2-2/ Utilisation de l'éprouvette graduée

III- Mesure du volume d'un solide

- 3-1/ Mesure du volume d'un solide de forme quelconque
- 3-2/ Mesure du volume d'un solide de forme géométrique simple

IV- Exercices

4-1/ Exercice 1

4-2/ Exercice 2

4-3/ Exercice 3

4-4/ Exercice 4

I- Le volume

.

1-1/ Définitions

Le volume d'un corps correspond à la place occupé dans l'espace par ce corps (solide, liquide ou gaz).

La capacité d' un récipient (ou sa contenance) représente le volume maximal du liquide que peut contenir ce récipient.

 $Volume_{(air)} + Volume_{(eau)} + Volume_{(solide)} = Capacit\'e du \, r\'ecipient$

1-2/ Unités de mesure

L'unité internationale de volume est le mètre cube. Son symbole est : m^3 . Pour un liquide on utilise aussi les unités de capacité ; le litre (L) et ses multiples et ses sous-multiples.

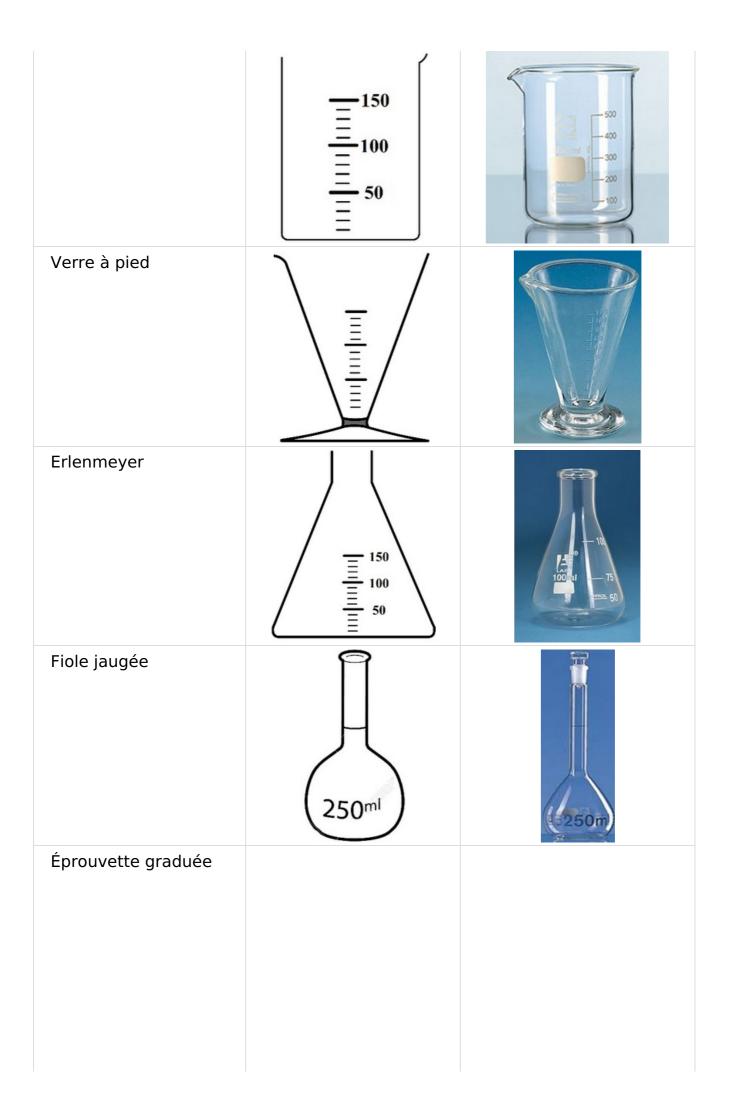
On a:

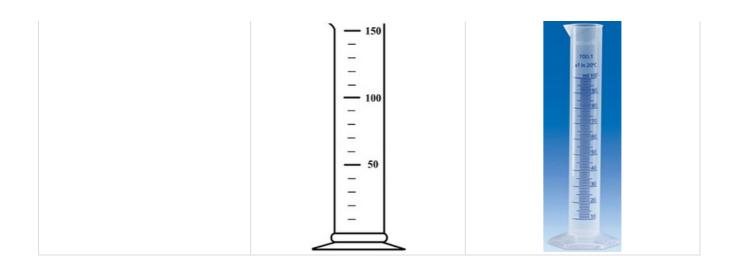
$$1 L = 1 dm^3$$

	hm³		dam³		m³		dm³		cm ³			mm³						
Ľ												L	dl	cl	ml			
L																		
H	_										86		\vdash					
H							\vdash			_			\vdash					
H							\vdash						\vdash					

Application

$$egin{array}{lll} 4,5\,dL &=& cm^3 \ 325\,daL &=& m^3 \ 13,8\,dm^3 &=& cL \ 12000\,cm^3 &=& L \end{array}$$

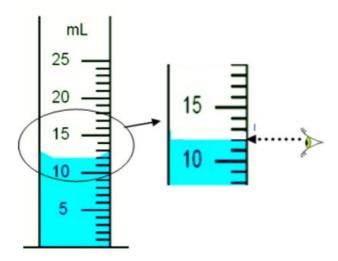

II- Mesure du volume d'un liquide


2-1/ Instruments de mesure

Pour mesurer le volume d'un liquide on utilise un récipient gradué (Bécher, Erlenmeyer, Verre à pied, Fiole jaugée, ...).

Pour plus de précision, on utilise l'éprouvette graduée.

Récher		



2-2/ Utilisation de l'éprouvette graduée

Pour mesure le volume d'un liquide avec une éprouvette graduée il faut :

- 1. Repérer l'unité inscrite sur l'éprouvette.
- 2. Déterminer le volume correspondant à une division (entre deux trais successifs).
- 3. Placer ses yeux à la même hauteur que la surface du liquide.
- 4. Lire la graduations coïncidant avec la bas du ménsique.

Exemple

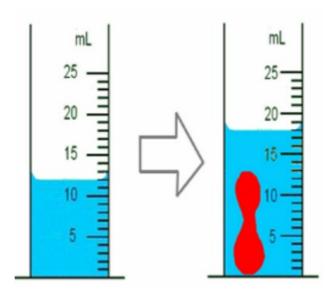
L'unité de mesure inscrite sur l'éprouvette est mL.

La capacité de cette éprouvette est 25 mL.

Le volume corespondant à une division est :1 mL

Le volume du liquide est 12 mL

III- Mesure du volume d'un solide


3-1/ Mesure du volume d'un solide de forme quelconque

Expérience

Verser un liquide dans une éprouvette graduée.

Placer doucement un solide dans l'éprouvette.

Mesurer le volume V1 du liquide puis le volume V2 de l'ensemble (Solide + liquide).

Observation

Le volume V1 du liquide dans l'éprouvette graduée est : $V_1\ =\ 12\ mL$

Le volume V2 du solide et du liquide est : $V_2 \ = \ 18 \ mL$

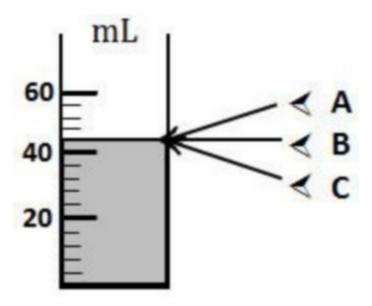
Le volume V du solide est : $V~=~V_2~-~V_1~=~18~mL~-~12~mL~=~6~mL$

Conclusion

On mesure le volume d'un solide avec la méthode du déplacement du liquide en appliquant la relation :

$$V = V_2 - V_1$$

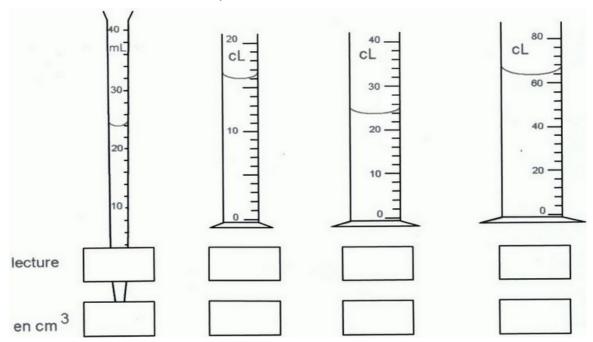
3-2/ Mesure du volume d'un solide de forme géométrique simple


On détermine le volume d'un solide de forme géométrique simple (cube , cylindre ,sphère , . . .) en utilisant une relation mathématique.

solide	cube	Parallélépipède rectangle	cylindre	sphère
Forme géométrique	- c -		h	
Volume V	V= c x c x c V= c ³	V = L x l x h	V= π x r x r x h V= π x r² x h	V=4/3 x π x r x r x r V= 4/3 x π x r ³

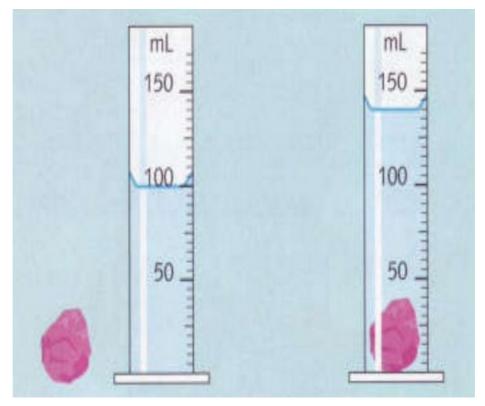
IV- Exercices

4-1/ Exercice 1


Pour mesurer le volume d'un liquide, on utilise l'éprouvette ci-dessous

- 1. En quelle unité l'éprouvette est -elle graduée ?
- 2. Quelle est la bonne position de l'œil pour bien lire le volume du liquide ?
- 3. Quel est le volume qui correspond chaque division graduée ?
- 4. Indiquer le volume du liquide.

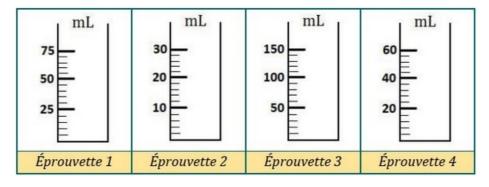
4-2/ Exercice 2


Quel volume de liquide contient chacun de ces récipients ? Notez ensuite la valeur de chaque volume en cm^3 .

4-3/ Exercice 3

On dispose d'un solide, dont on doit mesurer le volume.

On réalise les manipulations suivantes :



- 1. Quelle est la valeur d'une graduation sur cette éprouvette?
- 2. Quel est le volume de liquide contenu dans cette éprouvette avant d'introduire le solide ?
- 3. Quel est le volume de liquide contenu dans cette éprouvette après introduire le solide ?
- 4. Déduire le volume du solide ?

4-4/ Exercice 4

L'eau est placée dans les éprouvettes ci-dessous.

- 1. Quel est le volume qui correspond chaque division dans chaque éprouvette ?
- 2. Représenter le niveau de l'eau dans chaque éprouvette sachant que chacune contient 30mL d'eau.

