تمارين حول الشغل والطاقة الداخلية

تمرسن1
تنزل سيارة كتلتصا M=1t منحدرا مائلا بزاوية $\alpha=5^{\circ}$ بالنسبة للمستوى الأفقي ، بسرعة بدئية خلال النزول شغل السائق المكابح باستمرار وتوقفت السيارة في أسفل المنحدر بعد قطع المسافة 1d=200m ـ أحسب تغير الطاقة الميكانيكية خلال هذه المسافـة 2 ــ أحسب كمية الحرارة المبددة خلال حركة السيارة . نعطي تمرين2
تحتوي أسطوانة على غاز كامل ، ويمكن لمكبس مساحته S=20cm² من تغيير حجم الغاز في

 استنتج تغير الطاقة الداخلية للغاز أثناء هذا التحول . نعطي نتوفر على أسطوانة كظيمة مغلقة بواسطة مكبس كظيم ، كتلته m=500g ومساحته S=1dm² رأسيا بدون احتكاك تحتوي الأسطوانة على V=1
1 _ علما ان الضغط الخارجي هو po 1 _ 2 ـ نضع فوق المكبس جسما (C) كتلته M=1kg . أحسب الضغط الجديد داخل الأسطوانة عندما يستقر المكبس ويأخذ الغاز درجة حرارته البدئية . 3 ـ أحسب شغل القوة المطبقة على المواء المحصور داخل الأسطوانة إذا علمت أن المكبس نزل ب .1 mm 4 _ يمكن اعتبار الـواء كغاز كامل في شـروط هذه التجربة حيث لم تتغير درجة حرارته ـ ماذا يمكن القول g=10N /kg عن الطاقة الداخلية للهواء المحصور بداخل الأسطوانة ؟ نأخذ

1 ـ هل ذرات الفضة في الشبكة البلورية ساكنة ؟ 2 ـ ندخل قطعة الفضة في فرن درجة حرارته $1500^{\circ} \mathrm{C}$ ـ 1 علما أن قطعة الفضة تبقى في الحالة الصلبة .

أ ـ هل تتغير البنية البلورية للفضة ؟
ب ـ فسر لماذا يمكن القول أن الطاقة الداخلية للفضة تزايدت عند إدخالـها إلى الفرن ؟
ج - فسر مجهريا كيفية تزايد الطاقة الداخلية للقطعة الفضة .
3 _ نرفع درجة حرارة الفرن إلى $2210^{\circ} \mathrm{C}$ حيث تنصهر قطعة الفضة كليا . فسر لماذا تتزايد الطاقة
الداخلية لقطعة الفضة أثناء الانصـار ؟ 4 ـ لرفع درجة حرارة 1,0kgمن الفضة في الحالة الصلبة ب 1, 4 º 1 ينبغي منح طاقة بالانتقال الحراري 235J قيمتها
من جهة أخرى لتنصهر قطعة الفضة عند $2210^{\circ} \mathrm{C}$ ينبغي بدل طاقة قيمتـا 105 C منـا أحسب تغير الطاقة الداخلية للقطعة عندما تنتقل من الحالة الصلبة $\theta_{1}=20^{\circ} \mathrm{C}$ إلى الحالة السائلة عند

درجة الحرارة $\theta_{2}=2210^{\circ} \mathrm{C}$ (نفترض أن التحول يحدث دون انتقال الطاقة بالشغل)

تمرسن 5

تسقط قطعة جليد كتلتها m=2,00g من سحابة تتواجد على ارتفاع h h = من من سطح الأرض . نفترض أن درجة حرارة قطعة الجليد تبقى ثابتة خلال سقوطها نحو الأرض

الطاقة مع الـواء خلال السقوط .
 . $\mathrm{V}_{2}=12,1 \mathrm{~m} / \mathrm{s}:$
1 ـ بتطبيق مبرهنة الطاقة الحركية أوجد سرعة وصول قطعة الجليد إلى سطح الأرض باعتبار أن جميع

2 ـ استنتج شغل قوى الاحتكاك خلال سقوط القطعة . 3 ـ
3 ـ نعتبر أن القطعة تكتسب الشغل الذي أنجزته قوى الاحتكاك .

أ _ ما تأثير الطاقة المكتسبة على قطعة الجليد خلال السقوط ؟
 انصعرت من قطعة الجليد

تمرين 6
نعتبر آلة حرارية (آلة بخارية)، تستعمل هذه الآلة جسما مائعا الماء لإنجاز التبادلات الحرارية بين منبع
ساخن S (مولد بخار) ومنبع بارد S ${ }_{\text {(}}^{\text {(مكثف) }}$) وتمنح الطاقة بالشغل للمحيط الخارجي . اشتغال هذه الآلة حلقي ، مما يدل على أن الجسم المائع يرجع إلى حالته البدئية عند نهاية التحول .

يمنح المنبع الساخن

2 ـ عين تغير الطاقة الداخلية للجسم المائع خلال هذا التحول الحلقي . 1 الـا
3 ـ عين إشارة وقيمة الطاقة W المتبادلة مع الجسم المائع بالشغل .
4 _ أنجز الحصيلة الطاقية للجسم المائع واستنتج قيمة الطاقة الميكانيكية Em الناتجة من طرف الآلة خلال حلقة واحدة .
5 ـ أوجد القدرة 1 و لهذه الآلة علما أنها تنجز 3500 حلقة في الدقيقة . 6 ـ نعرف المردود η لآلة بخارج الطاقة الميكانيكية الناتجة خلال حلقة إلى الطاقة التي يكتسبها الآلة من طرف المنبع الساخن . عين مردود هذه الآلة . ما هو رأيك ؟ تمرين7
نعتبر المجموعة \} الأسطوانة ، المكبس \{ كظيمة أي لا تتبادل الحرارة مع الوسط الخارجي . المكبس شعاعه r=4cm
يوجد بداخل الأسطوانة غاز كامل حجمه Vo وعند درجة حرارة To والضغط po وهو الضغط الجوي . نطبق على المكبس قوة F ثابتة شـدتها F=190N ، فينزلق المكبس ببطء وبسرعة ثابتة داخل
 1 ـ أحسب ضغط الغاز 1 في الحالة النهائية
 3 ـ أحسب تغير الطاقة الداخلية للغاز أثناء هذا التحول .

