LES RACINES CARRÉES

Objectifs d'apprentissage

- Connaître que si 'a' désigne un nombre positif, \sqrt{a} est le nombre positif dont le carré est 'a'.
- Connaître et utiliser les égalités $\sqrt{a^2} = a$ et $\left(\sqrt{a}\right)^2 = a$ où 'a' est un nombre positif.
- Utiliser les égalités : $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$, $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ où a et b sont deux nombres positifs et b \neq 0 dans le dernier cas.
- Déterminer les nombres x tels que : $x^2 = a$ Rendre rationnel le dénominateur d'un nombre réel.

Gestion du temps

10 heures

Prérequis

- **⊗** Effectuer des calculs sur des nombres rationnels.
- ⊗ Puissances d'un nombre rationnel.
- \otimes Equations.
- **⊗ Théorème de Pythagore**

Outils didactiques

- ♣ Tableau.
- . Livre scolaire.
- Calculatrice.

◆ Pr : Abdelilah BOUTAYEB

◆ Niveau : 3^{ème} APIC

KKK'D7%'A5 ♦ Matière : Mathématiques

◆ Etablissement : Collège Nahda

Activités

Solution 1:1) Calcule ce qui suit : 3^2 , 8^2 , $(4/7)^2$, $(-2)^2$. ****** 2) Ecris sous forme d'une puissance : 25, 100, 36.

Activité 2:1 Trouve x tel que: x²=81
2) Compléte le tableau à l'aide d'une calculatrice :

а	4	6	3	11
a^2				
$\sqrt{a^2}$				

3) D'après le tableau qu'est-ce que vous observez ?

Solution 3:1 Calculez $\sqrt{4 \times 9}$ et $\sqrt{4} \times \sqrt{9}$. Qu'est-ce que vous observez ?

- 2) Calculez $\sqrt{\frac{4}{9}}$ et $\frac{\sqrt{4}}{\sqrt{9}}$. Qu'est-ce que vous observez ?
- 3) Calculez $\sqrt{4+9}$ et $\sqrt{4} + \sqrt{9}$. Qu'est-ce que vous observez?

Solution 4:1 Montrez que: $\frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{a}$

Contenu de la leçon

I- Notion de racine carrée :

*Définition : Soit a un nombre positif. La racine carrée de a, noté \sqrt{a} ., est le nombre positif dont le carrée est a.

Le symbole √ est appelé « radical »

*Règle : Quel que soit a un nombre positif, on a : $(\sqrt{a})^2 = \sqrt{a^2} = a$.

*Exemples:
$$\sqrt{7^2} = 7$$
; $(\sqrt{13})^2 = 13$; $(\sqrt{\frac{6}{15}})^2 = \frac{6}{15}$; $\sqrt{25} = \sqrt{5^2} = 5$; $\sqrt{\frac{36}{81}} = \sqrt{\frac{6^2}{9^2}} = \sqrt{(\frac{6}{9})^2} = \frac{6}{9} = \frac{2}{3}$; $\sqrt{1} = 1$; $\sqrt{0} = 0$

*Remarque : La racine carrée d'un nombre <u>négatif n'existe pas.</u> > 79 ; 757

II- Racines carrées et opérations :

1) Multiplication de racine carrée :

*Propriété 1 : Soient a et b deux nombres positifs, on a : $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$.

*Exemples: $\sqrt{3} \times \sqrt{7} = \sqrt{3 \times 7} = \sqrt{21}$; $\sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2}$

2) Quotient de racine carrée :

*Propriété 2 : Soient a et b deux nombres positifs avec b≠0, on a :

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} .$$

*Exemples: $\sqrt{\frac{49}{25}} = \frac{\sqrt{49}}{\sqrt{25}} = \frac{7}{5}$; $\frac{\sqrt{12}}{\sqrt{3}} = \sqrt{\frac{12}{3}} = \sqrt{4} = 2$

III- Rendre rationnel le dénominateur d'un nombre réel :

1) Première cas :

*
$$\frac{2}{\sqrt{7}} = \frac{2 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{2\sqrt{7}}{(\sqrt{7})^2} = \frac{2\sqrt{7}}{7}$$

Evaluation

Exercise 1: Calcule ce qui suit : $\sqrt{16}$; $\frac{4}{\sqrt{36}}$; $\sqrt{21^2}$; $\sqrt{(-49)^2}$; $\frac{\sqrt{0.25}}{\sqrt{0.04}}$

Exercice 2: Calcule ce qui suit : $5\sqrt{9}$; $-7\sqrt{(-4)^2}$; $\frac{\sqrt{9}+\sqrt{81}}{\sqrt{49}}$; $\sqrt{31+\sqrt{21+\sqrt{9}+\sqrt{49}}}$

<u>Exercice 3:</u> Simplifiez ce qui suit : $\sqrt{27}$; $\sqrt{50}$; $-\sqrt{48}$; $\sqrt{2} \times \sqrt{32}$; $\sqrt{\frac{4}{81}}$; $\sqrt{\frac{8}{18}}$; $\sqrt{\frac{9}{7}} \times \sqrt{7}$

<u>Exercice 4:</u> Ecris chaque nombre sous la forme $a\sqrt{2}$ où a est un entier : $\sqrt{18}$; $\sqrt{32}$; $\sqrt{200}$; $\sqrt{72}$

<u>Exercice 5</u>: Réduis ce qui suit :

 $7\sqrt{3} - \sqrt{27} + 2\sqrt{12}$; $\sqrt{24} + 7\sqrt{6} - 2\sqrt{54}$; $4\sqrt{7} - 8\sqrt{28} + \sqrt{700}$: $2\sqrt{18} + \sqrt{32} + 3\sqrt{2}$

Exercice 6: Réduis ce qui suit :

 $\sqrt{20} + 2\sqrt{45} - 3\sqrt{80}$; $\sqrt{12} + \sqrt{75} - \sqrt{27}$; $3\sqrt{8} + \sqrt{50} + 2\sqrt{32}$; $\sqrt{\frac{2}{3}} + 2\sqrt{\frac{8}{27}} - \frac{1}{2}\sqrt{\frac{50}{12}}$

Activités

Contenu de la leçon

Evaluation

Stativit 6 : ↑ Développer ce qui suit : (2-a)(2+a) ; (3+4a)(3-4a)

2) Montrez que : $\frac{1}{\sqrt{a}-\sqrt{b}} = \frac{\sqrt{a}+\sqrt{b}}{a-b}$

Activité 6 : Trouvez x tel que : $x^2=9$; $x^2=6$; $x^2=0$; $x^2=-4$

** $\frac{3}{2\sqrt{5}} = \frac{3\times\sqrt{5}}{2\sqrt{5}\times\sqrt{5}} = \frac{3\sqrt{5}}{2\times(\sqrt{5})^2} = \frac{3\sqrt{5}}{2\times5} = \frac{3\sqrt{5}}{10}$

$$\frac{2+\sqrt{5}}{7\sqrt{3}} = \frac{(2+\sqrt{5})\times\sqrt{3}}{7\sqrt{3}\times\sqrt{3}} = \frac{2\times\sqrt{3}+\sqrt{5}\times\sqrt{3}}{7\times(\sqrt{3})^2} = \frac{2\sqrt{3}+\sqrt{15}}{7\times3} = \frac{2\sqrt{3}+\sqrt{15}}{21}$$

2) Deuxième cas: Utilisation du conjugué

✓ N.B : Le conjugué de (a+b) est (a-b), et le conjugué de (a-b) est (a+b).

*
$$\frac{2}{5-\sqrt{3}} = \frac{2\times(5+\sqrt{3})}{(5-\sqrt{3})\times(5+\sqrt{3})} = \frac{2\times5+2\times\sqrt{3}}{5^2-(\sqrt{3})^2} = \frac{10+2\sqrt{3}}{25-3} = \frac{10+2\sqrt{3}}{22}$$

**
$$\frac{\sqrt{6}}{\sqrt{7}+1} = \frac{\sqrt{6} \times (\sqrt{7}-1)}{(\sqrt{7}+1) \times (\sqrt{7}-1)} = \frac{\sqrt{6} \times \sqrt{7} - \sqrt{6} \times 1}{(\sqrt{7})^2 - 1^2} = \frac{\sqrt{42} - \sqrt{6}}{7 - 1} = \frac{\sqrt{42} - \sqrt{6}}{6}$$

IV- Résolution d'équation $x^2 = a$:

- *Règle : Si a>0, alors l'équation a deux solutions sont : \sqrt{a} et $-\sqrt{a}$.
 - Si a=0, alors la solution de l'équation est 0.
 - Si a<0, alors l'équation n'a pas de solution.
- *Exemples: Résolvez les équations suivantes: x²=11; x²=-8; x²=0
- * On a : x²=11

Alors : $x=\sqrt{11}$ ou $x=-\sqrt{11}$

Donc l'équation a deux solutions sont : $\sqrt{11}$ $et - \sqrt{11}$

** On a : $x^2=-8$

Donc l'équation n'a pas de solution car : -8<0

*** On a : x²=0

Donc la solution de l'équation est : 0

KKK'D7%'A5

<u>Exercice 7:</u> Eliminer le radical du dénominateur des fractions suivantes :

$$\frac{3}{\sqrt{11}}$$
; $\frac{10}{2\sqrt{5}}$; $\frac{\sqrt{5}-3}{\sqrt{5}}$; $\frac{-2\sqrt{3}}{5\sqrt{6}}$

<u>Exercice 8 :</u> Eliminer le radical du dénominateur des fractions suivantes :

$$\frac{1}{\sqrt{3}+1} ; \frac{2\sqrt{3}}{4-\sqrt{3}} ; \frac{\sqrt{2}-1}{\sqrt{2}+1} ; \frac{14}{3\sqrt{3}+2\sqrt{5}} ;$$

$$\frac{5}{\sqrt{7}-2} - \frac{2}{\sqrt{7}} ; \frac{3+\sqrt{5}}{7+\sqrt{5}} - \frac{3-\sqrt{5}}{7-\sqrt{5}} ; \frac{1}{1+\sqrt{2}+\sqrt{3}}$$

Exercice 9: Résolvez les équations

suivantes:
$$x^2-25=0$$
; $x^2+9=0$; $5+x^2=5$;

$$4x^2=16$$
; $\frac{x^2}{4}=5$; $9x^2-8=0$; $3x^2+4=0$;

$$2x^2=6$$
; $\frac{2x^2}{3}=4$