Mathématiques I

Épreuve 2013

<u>Question 1</u>: On considère une succession de sacs que l'on désigne par S_1 , S_2 ,.... S_k Au départ le sac S_1 contient 2 jetons noirs et un jeton blanc ; tous les autres sacs contiennent chacun un jeton noir et un jeton blanc.

On tire au hasard un jeton du sac S_1 que l'on place dans le sac S_2 . Puis on tire au hasard un jeton du sac S_2 que l'on place dans le sac S_3 , et ainsi de suite.

On note B_k l'évènement : << le jeton tiré du sac S_k est blanc >>, et p_k = $p(B_k)$ sa probabilité. Alors pour tout $n \ge 1$:

A:
$$P_{n+1}=1/3p_n+2/3$$
; B: $P_{n+1}=1/3p_n+1/3$; C: $P_{n+1}=1/3p_n-2/3$; D: $P_{n+1}=1/3p_n-1/3$; E: Autre réponse

Question 2: Une urne contient *n* boules numérotées de 1 à *n*, et on suppose que *n*≥3. On tire au hasard et successivement 3 boules de l'urne ; les tirages sont effectués sans remise. La probabilité de l'évènement : " On a obtenu dans l'ordre trois numéros consécutifs" est :

A:
$$\frac{1}{n^2}$$
; $B: \frac{1}{n(n-1)(n+1)}$; $C: \frac{1}{n(n-1)}$; $D: \frac{1}{n(n+1)}$; $E: Autre Réponse$

Question3 : Soit X une variable aléatoire a densité, de loi uniforme sur l'intervalle]0,1]. On pose $Y=-\beta\ln(X)$; β étant un nombre réel strictement positif. Déterminer l'espérance mathématique de Y.

$$A/\frac{\beta}{2}+1$$
 ; $B/2\beta$; C/β ; $D/\ln(\beta)$; $E/\text{Autre Réponse}$

Question4:

Un mobile se déplace aléatoirement dans l'ensemble des sommets d'un triangle ABC de la façon suivante : si, à l'instant n, il est sur l'un quelconque des trois sommets, alors à l'instant (n+1), soit il y reste, avec une probabilité de $\frac{2}{3}$, soit il se place sur l'un des deux autres sommets, et ceci avec la même probabilité.

On note A_n l'événement : " le mobile se trouve en A à l'instant n ".

B_n l'événement : " le mobile se trouve en B à l'instant n".

C_n l'événement : " le mobile se trouve en C à l'instant n".

On pose; $a_n=p(A_n)$, $b_n=p(B_n)$ et $c_n=p(C_n)$.

Soit le vecteur-colonne de \mathbf{R}^3 : $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$

On a alors : $X_{n+1} = M.X_n$, où M est la matrice carrée d'ordre 3 suivante :

$$A)\begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0\\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2}\\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \end{pmatrix} \qquad B)\begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6}\\ \frac{1}{3} & \frac{1}{6} & \frac{2}{3} \end{pmatrix} \qquad C)\begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{2}{3}\\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\ \frac{2}{3} & \frac{1}{6} & \frac{1}{3} \end{pmatrix}$$

$$B)\begin{pmatrix} \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{2}{3} \end{pmatrix}$$

$$C)\begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{2}{3} \\ \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

$$D)\begin{pmatrix} \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \end{pmatrix}$$

E) Autre réponse

 $\underline{\textbf{Question 5}}$: Soit X une variable aléatoire réelle ayant pour densité de probabilité la fonction réelle fdéfinie par :

 $f(x) = a \exp(-3x^2)$ Pour tout x réel où **a** est une constante à déterminer éventuellement. L'écart-type de X est :

$$A:\frac{1}{3};$$

$$B:\frac{1}{\sqrt{3}}$$

$$C: \sqrt{6}$$

$$D: \frac{1}{\sqrt{6}};$$

 $B:\frac{1}{\sqrt{3}}$; $C:\sqrt{6}$; $D:\frac{1}{\sqrt{6}}$; E: Autre Réponse

Question 6 : Soit X une variable aléatoire de densité de probabilité f définie sur IR par :

$$f(x) = \begin{cases} e^{-(x-a)} & si \ x > a \\ 0 & ailleurs \end{cases} ; a \in IR$$

Déterminer le nombre réel m tel que : $F(m) = \frac{1}{2}$, où F est la fonction de répartition de X.

C/
$$a-\frac{1}{3}ln2$$

B/ a+ln2 ; C/
$$a-\frac{1}{3}ln2$$
 ; D/ $\frac{1}{2}a$; E/ Autre Réponse.

Question 7 Soit a un nombre réel non nul, on considère la suite $(p_n)_{n\geq 0}$ définie par $\forall n\in IN$,

$$p_n = \frac{1}{8} \left(\frac{2+a^n}{n!} \right)$$

Pour quelle valeur de a, la suite $(p_n)_{n\geq 0}$ définit-elle une loi de probabilité ?

2

A/
$$\ln 2$$
; B/ $\ln (8-2e)$; C/ 1- $\ln (8-e)$; D/ $\frac{1}{2}$; E/ Autre réponse.

Question 8: Une urne contient 3 dés équilibrés. Deux d'entre eux sont normaux : ils possèdent six faces numérotées de 1à 6. Le troisième est truqué : il possède deux faces numérotées 1 et quatre faces portent le numéro 6.

On prend un dé au hasard dans l'urne et on effectue de manière indépendante des lancers successifs de celui-ci. On note pour tout n entier non nul, S_n l'évènement << on obtient 6 à chacun des n premiers lancers >> et P_n sa probabilité

$$\mathsf{A}: P_n = \frac{1}{2(\frac{1}{4})^n + 1} \, ; \quad \mathsf{B}: P_n = \frac{1}{2(\frac{1}{3})^n + 1} \, ; \quad \mathsf{C}: P_n = \frac{1}{2(\frac{1}{6})^n + 1} \, ; \quad \mathsf{D}: P_n = \frac{1}{2(\frac{2}{3})^n + 1} \, ; \quad \mathsf{E}: \mathsf{Autre \, R\'eponse}$$

Question 9:

On donne la série statistique suivante : 14, 16, 12, 9, 11, 18, 7, 8, 9, 16, 7, 9, 18. La médiane est égale à :

B) 11

C) 14 D) 16 E) Autre réponse

Question 10: Calculer la limite de la suite $(U_n)_{n\geq 1}$ définie par :

$$U_n = \sum_{k=1}^{2n} \frac{n}{n^2 + k}$$

A/ $+\infty$; B/ $\frac{3}{2}$; C/ $3e^2$; D/ 2 ; E/Autre Réponse

Question 11 : Soit n un entier naturel non nul. On considère l'intégrale \mathbf{l}_n définie par :

$$\int_0^1 x^n e^{1-x} dx$$

Alors $I_{n+1} =$

 $A: -1 - (n+1)I_n;$ $B: -1-I_n;$ $C: -1+nI_n;$ $D: -1+(n+1)I_n;$ E: Autre Réponse

Question 12 : Calculer l'intégrale suivante :

$$\int_{0}^{1} \frac{1}{(e^{x}+1)^{2}} dx$$

A)
$$\frac{3}{2}e - \ln 2$$
; B) $\frac{1}{2} - \ln \left(\frac{e+1}{2}\right) + \frac{1}{e+1}$; C) $\ln \left(\frac{e+1}{2}\right) + \frac{1}{e+1}$; D) $\ln \left(\frac{e+1}{2}\right) - \frac{1}{e+1}$; E) Autre Réponse

Question 13 : Calculer l'intégrale suivante : $\int_2^3 \frac{2x}{(x^2-1)^2} lnx \ dx$

A: $-13/4 \ln 3 + 17/6 \ln 2$; B: $-13/8 \ln 3 + 17/3 \ln 2$; C: $-13/8 \ln 3 + 17/2 \ln 2$;

D: $-13/8 \ln 3 + 17/6 \ln 2$; E: Autre Réponse.

Question 14 : Soit le système à 3 inconnues réelles x,y et z

$$\begin{cases} x - 3y + 7z = -25 \\ 3x + y + z = 5 \\ 3x + 11y - 19z = 85 \end{cases}$$

Alors l'ensemble des solutions de ce-système est :

 $A: \{(-z-1; 2z-8; z); z \in \mathbb{R}\}; \quad B: \{(-z-1; 2z+8; z \in \mathbb{R})\}; \quad C: \{(z+1; 2z+8; z); z \in \mathbb{R}\};$

 $D:\{(-1;8;0)\};$ E: Autre Réponse

Question 15 : Soit le système à 4 inconnues réelles x,y,z et t

$$\begin{cases} x - y + z - 2t = -8\\ 2x - y + 3z + t = 23\\ 4x + 3y + 5z - 3t = 7\\ 5x - 2y + 8z + 5t = 77 \end{cases}$$

Alors l'ensemble des solutions de ce système est :

A:
$$\{(2z-3t+31; -z-5t+39; z; t); (z,t) \in \mathbb{R}^2\}$$
; B: $\{(-2z+3t+31; z-5t+39; z; t); (z,t) \in \mathbb{R}^2\}$; C: $\{(-2z-3t+31; -z-5t+39; z; t); (z,t) \in \mathbb{R}^2\}$; D: $\{(28; 34; 0; 1)\}$; E: Autre Réponse

Question 16 : Soit a un nombre réel et n un entier naturel non nul et soit f la fonction définie

sur l'intervalle
$$[0; +\infty[$$
 de \mathbb{R} par $f(x) = \begin{cases} \frac{1-(1+x)^{-n}}{x} & si \ x > 0 \\ a & si \ x = 0 \end{cases}$

La condition nécessaire et suffisante pour que f soit continue en 0 est :

Question 17:

On considère les matrices carrées d'ordre 3 suivantes :

$$P = \begin{pmatrix} 1 & -1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & 1 & 1 \end{pmatrix}, Q = \begin{pmatrix} 1 & -\sqrt{2} & 1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{pmatrix} \text{ et } A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

On pose : $B = \frac{1}{4}QAP$. B est alors égale à :

$$A)\begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & -\sqrt{2} \end{pmatrix} \qquad B)\begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & -\sqrt{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad C)\begin{pmatrix} 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & -\sqrt{2} \end{pmatrix}$$

$$D)\begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\sqrt{2} \end{pmatrix}$$
 E) Autre Réponse

Question18:

On considère la fonction f définie sur R par :

$$f(0) = 0$$
 et $\forall x \in \mathbb{R}^*$, $f(x) = e^{-\frac{1}{x^2}}$

Soit (C_f) la courbe représentative de f. La tangente à (C_f) à l'origine a pour équation :

4

Question 19: Soit P la matrice $\begin{bmatrix} 1 & -1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & 1 & 1 \end{bmatrix}$. P est inversible et son inverse P^{-1} est égale à

$$A) \ \ \frac{1}{4} \begin{bmatrix} 0 & 1 & 1 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 1 & \sqrt{2} & 1 \end{bmatrix}; B) \frac{1}{4} \begin{bmatrix} 1 & -\sqrt{2} & 1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; C) \frac{1}{4} \begin{bmatrix} 1 & -\sqrt{2} & 1 \\ -2 & 0 & 2 \\ \sqrt{2} & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 1 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 2 \end{bmatrix}; D) \frac{1}{4} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ -2 & 0 & 2 \\ 1 & \sqrt{2} & 2 \end{bmatrix};$$

E) Autre Réponse

Question 20: on effectue des tirages successifs et sans remise d'une boule dans une urne contenant 2 boules blanches et 3 boules noires. Soit X la variable aléatoire égale au rang de sortie de la première boule blanche, et Y la variable aléatoire égale au rang de sortie de la seconde boule blanche.

Après avoir déterminé la loi du couple (X,Y), calculer la covariance de X et Y, Cov(X,Y)

$$A/\frac{1}{2}$$

$$C/\frac{1}{2}$$

A/
$$\frac{1}{2}$$
 ; B/-3 ; C/ $\frac{1}{2}$; D/0 ; E/autre réponse