

ROYAUME DU MAROC UNIVERSITE ABDELMALEK ESSAÁDI Ecole Nationale des Sciences Appliquées

المملكة المغربية جامعة عبد المالك السعدي العدرسة الوطنية للعلوم التطبيقية طنجة

Concours d'accès en 1° Année des Classes Préparatoires de l'ENSA Tanger (Edition 2012)

Epreuve de Mathématiques

Durée de l'épreuve : 1h 15mn

(Trois pages et une fiche réponse à remettre au surveillant, dûment remplie à la fin de l'épreuve)

CALCULATRICE NON AUTORISEE

Parmi les réponses proposées, une seule est juste. Pour chaque question, répondre sur la fiche réponse par une croix dans la case correspondante. (Barème : une réponse juste : +1 ; une réponse fausse : -1 ; pas de réponse : 0)

1) Soit L une liste finie d'entiers relatifs consécutifs dont le premier terme est -15.	
$L = \{-15, -14,\}$. Si la somme de tous les	a) 34 b) 50 c) 18
éléments de L est égale à 51 alors le nombre total des termes de la liste L est égale	
$2) \lim_{n \to \infty} \frac{(-1)^n 3^{n+1}}{\pi^n} =$	a) 3 b) 0 c) $\frac{3}{\pi}$
Soit $Z_n = \sum_{k=1}^n \frac{e^{k-1}}{\pi^{k+1}}$; alors $\lim_{n \to \infty} Z_n =$	a)+ ∞ b) $\frac{1}{\pi(\pi-e)}$ c) $\frac{1}{\pi-e}$
4) Une entreprise de fabrication de mixeurs a	
adopté pour l'année 2012 la stratégie de production suivante : la production connaîtra une diminution	a) $t_{n+1} = 0, 1t_n - 150$
mensuelle de 10%; mais grâce à une commande destinée à l'export, l'entreprise produira chaque	b) $t_{n+1} = 0.9t_n + 150$
mois 150 mixeurs de plus.	0.1.
On note à présent par t _a la production de l'usine	$c) t_{n+1} = 0, 1t_n$
relative au mois Non. L'expression reliant	
t _{n+1} et t _n est donnée par	

5) suite de la question 4). A Long terme la production mensuelle des mixeurs est estimée à P =	a) $P = 10$ mixeurs b) $P = 90$ mixeurs c) $P = 1500$ mixeurs
Soit $(u_n)_{n\geq 0}$ une suite numérique à termes strictement positifs $(u_n > 0)$ vérifiant $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \frac{1}{2}$, Alors $\lim_{n\to\infty} u_n = L$ avec	a) $L = \frac{1}{2}$ b) $L = 0$ c) $0 < L < \frac{1}{2}$
7) Soit $T_n = \sum_{p=1}^n 2^{\frac{1}{2p-1}} - 2^{\frac{1}{2p+1}}$; alors $\lim_{n \to \infty} T_n =$	a) 1 b) 0 c) +∞

8) On considère la courbe représentative de la			
function $f(x) = e^{-x^2}$. On désigne par	a)		
R(x), $x > 0$ le rectangle symétrique inscrit à l'intérieur de la courbe et dont l'un des côtés est le segment d'extrémités	b) $\frac{}{2}$	2	
(-x,0) et $(x,0)$. La surface maximale de ce rectangle est égale à	c) $\sqrt{\frac{2}{3}}$	<u>2</u> e	
$9) \lim_{x \to 0^+} \frac{\sin \pi x}{1 - \cos \sqrt{\pi x}} =$	a)0	b)2	c)√π
$\lim_{h \to 0} \frac{1}{h} \int_{e}^{e+h} \frac{1}{(\ln x)^2} dx =$	<i>a</i>)1	b) e	c) 0
11) $\int_0^{\frac{\pi}{2}} \ln \frac{1 + \sin x}{1 + \cos x} dx =$	a) $\frac{\sqrt{\pi}}{\pi}$	b) 0	c) ln π
$12) \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{dx}{4x^2 + 4x + 5}$	a) $\frac{\pi}{16}$	b) $\frac{\pi\sqrt{3}}{18}$	$c)\frac{\sqrt{\pi}}{6}$
13) La surface formée par la courbe de $f(x) = (\ln x)^2$ et par les droites $x = 1$ et $x = e$ est égale	a) e b) 3e c) e-	-2 2	

Soit $(V_n)_{n\geq 3}$ la suite définie par	1 2
$14) V_n = \int_{c}^{n} \frac{1}{x \sqrt{(\ln x)^3}} dx$	a) $\frac{1}{2}$ b) $+\infty$ c) $\frac{2}{\sqrt{e}}$
Alors $\lim_{n\to\infty} V_n =$	
15)	$a) y = \frac{8}{\pi}x - 2$
Soit $g(x) = \int_1^{gx} \frac{1}{\operatorname{arc} tgu} du$, alors	1 100 100 100 100 100 100 100 100 100 1
la tangente à la courbe de g en $x = \frac{\pi}{4}$	$b) y = \frac{\pi}{4}(x-1)$
admet pour équation	$c) y = \frac{\pi}{2} x - 1$
16)	
$\int_0^{\frac{\pi}{4}} \frac{dx}{\cos^2 x + 4\sin^2 x} =$	a) $\frac{\ln 2}{2}$ b) $\frac{1}{2}$ arag2 c) $\frac{1}{2}$
$\lim_{n\to\infty}\frac{\left(n!\right)^2}{(2n)!}=$	1
17) $\lim_{n\to\infty} \frac{1}{(2n)!} =$	(a) 0 b) $\frac{1}{2}$ c) + ∞
Soit B= $\{u, v, w\}$ une base de $(IR^3, +, \cdot)$.	
On considère les familles suivantes $E = \{u + v, v + w, u + w\}$	a) Toutes les 4
$18)^{N = \{u, v, u + w\}}$	
$S = \{-u, v + w, v - u + w \}$	b) Seulement E
$A = \{u - v - w, u + v + w, u\}$	c) Seulement E et N
Alors laquelle (ou lesquelles)	
des familles forme une base ?	

19) Soit $S = \{(x, y, z) \in \mathbb{R}^3 / x + 2y = 0\}$. Lequel des systèmes suivants forme une base pour E?	a) {(-2,1,0);(0,1,0); (0,0,1)} b) {(-2,1,0);(0,0,1)} c) {(-2,1,0)}
On considère les ensembles suivants $E = \{(x, y, z) \in \mathbb{R}^3 / x + yz = 0\}$ $N = \{(x, y, z) \in \mathbb{R}^3 / xyz = 0\}$ $20) S = \{(x, y, z) \in \mathbb{R}^3 / z = 2\}$ $A = \{(x, y, z) \in \mathbb{R}^3 / x + y = z\}$ Lesquels parmi ces ensembles sont des sous espaces vectoriels de \mathbb{R}^3 ?	a) Seulement Ab) Seulement A et Nc) Tous E,N,S et A
Soit A une matrice carrée d'ordre n vérifiant $A^2 = 2I_n - A$ (I_n est la matrice identité) On considère les égalités suivantes (I) det $A = 0$ (II) $A^{-1} = \frac{1}{2}(A + I_n)$ (III) det $A \neq 0$ (IV) $A^{-1} = 2I_n + A$ (V) det $(A + I_n) = \frac{2}{\det A}$ Alors	a) Seulement (I) et (IV) sont vraies b) Seulement (II), (III) et (V) sont vraies c) Seulement (III), (IV) et (V) sont vraies

$22) \sqrt{12345^2 - 12343 \times 12347} =$	a) 4 b) 2 c) 42
$\lim_{n\to\infty} (\sqrt{2})(\sqrt[4]{2})(\sqrt[8]{2})\cdots (\sqrt[2^n]{2}) =$	a) 1 b) 2 c) $\sqrt{2}$
Si $\int_0^x h(t)dt = x \operatorname{arctg} x$ alors $h(1) =$	a) $\frac{1}{2}$ b) $\frac{\pi}{4}$ c) $\frac{\pi+2}{4}$
$\int \frac{dx}{tg^3x}$	a) $-\left[\frac{1}{2\sin^2 x} + \ln \sin x \right] + K$ b) $-\frac{1}{2tg^2x} + K$ c) $\frac{1}{2arctg^2x} + K;$ K une constante