Chimie organique : exercices

Les réactions d'estérification et d'hydrolyse

Exercice 1 : QCM

Répondre vrai ou faux . À chaque question peuvent correspondre aucune, une ou plusieurs propositions correctes .

- 1. Pour augmenter le rendement lors de la synthèse d'un ester :
 - a. on utilise un catalyseur
 - b. on ajoute de la pierre ponce;
 - c. On peut travailler avec un excès d'alcool
 - d. on chauffe à reflux;
 - e. on distille l'ester au fur et à mesure de sa formation .
- 2. On réalise l'hydrolyse du butanoate de méthyle . les produits de l'hydrolyse sont :
 - a. Le butan-1-ol et l'acide méthanoïque
 - b. le butan-2-ol et l'acide méthanoïque;
 - c. Le méthanol et l'acide butanoïque
- 3. En chauffe à reflux le mélange de l'exercice précédent :
 - a. On augmente les quantités de matière d'acide et d'alcool obtenues;
 - b. on atteint plus rapidement l'état d'équilibre;
 - c. on approche à l'avancement maximal;
 - d. les quantités d'acide et d'alcool formées sont plus importantes qu'en opérant à température ambiante et la transformation est plus rapide; Les quantités d'acide et d'alcool formées sont les mêmes qu'en opérant à température ambiante mais la transformation est plus rapide.
- 4. Au cours d'une estérification, en éliminant l'eau au fur et à mesure :
 - a. On déplace l'équilibre dans le sens de l'estérification;
 - b. le quotient de réaction Q_r devient égale à la constante d'équilibre K
 - c. le quotient de réaction Q_r reste inférieur à la constante d'équilibre K

Exercice 2:

Écrire la formule de l'acide carboxylique et de l'alcool nécessaires à la préparation des esters dont les formules semi-développées suivants :

$$\begin{array}{c} O \\ \\ C - OH \\ O \\ \\ O - CH_2 \end{array} \qquad \qquad \begin{array}{c} O \\ \\ C - OH \\ \\ O \\ \end{array}$$

Exercice 3:

On réalise le chauffage à reflux d'un mélange de 0,40 mol d'acide méthanoïque et de 0,40 mol de propan-2-ol . On ajoute quelques gouttes d'acide sulfurique concentré . Au bout d'une heure , on arrête la réaction et l'on détermine par titrage acido-basique la quantité restante d'acide méthanoïque , soit n=0,18mol.

- 1. Quel ester obtient-on?
- 2. Établir le tableau d'avancement de la réaction étudiée.

3.

- 3. 1. Quelle est la valeur de l'avancement à l'équilibre x_{eq} ?
- 3. 2. Exprimer la constante d'équilibre K en fonction de x_{eq} et la calculer .
- 4. Calculer le rendement de cette transformation .

Exercice 4:

Dans une séance de TP , chaque binôme dispose de 8 tube à essai , surmontés d'un réfrigérant à air , et contenant chacun $5,9\times 10^{-3}mol$ de méthanoate d'éthyle et 10ml d'eau . Les tubes sont placés dans un bain-marie thermostaté à $40^{\circ}C$. Toutes les 10 minutes , les élèves placent un des tube à essai dans un bain d'eau glacée , puis titrent l'acide formé par une solution aqueuse de soude de concentration $c_b=0,50mol/l$, en présence de phénolphtaléine

Les résultats obtenus sont les suivants (V_{equiv} est la valeur du volume de soude versé à l'équivalence)

t(min)									
$V_{equiv}(\mathrm{mL})$	0	2.1	3.7	5.0	6.1	7.0	7.7	8.9	9.4

- 1. Écrire la formule semi-développée du méthanoate d'éthyle. On écrit en vert le groupe caractéristique. À quelle famille cette espèce chimique appartient-elle?
- 2. 1. Donner le nom de la réaction chimique en jeu dans les tubes à essai et les caractéristique de la transformation associée .
 - 2. 2. Écrire l'équation chimique correspondante

3.

2.

- 3. 1. À l'aide d'un tableau d'avancement , déterminer la quantité de matière n_a d'acide présent à l'instant t, en fonction de V_{quiv}
 - 3. 2. En déduire la valeur de l'avancement x de la réaction à chaque instant t.

4.

- 4. 1. Tracer le graphe de la fonction x = f(t)
- 4. 2. Quelle est la valeur du rendement de la transformation et pourquoi est-il élevé? Donner : Masse volumique de l'eau $\rho(H_2O) = 1,0g/m^3$; masse molaire de l'eau 18mol/l

Exercice 5:

On réalise la synthèse d'un ester E , à odeur de rhum, en faisant réagir en présence de quelque goutte d'acide sulfurique , 9,20 g d'acide méthanoïque A avec 11,5 g d'éthanol B . Après distillation , on recueille une masse $m_{exp}=6,95g$ de E.

- 1. Écrire les formules semi-développées des espèces A, B et E . En déduire l'équation de la réaction mise en jeu .
- 2. Déterminer le réactif limitant de cette synthèse.
- 3. Définir, puis calculer, le rendement de cette synthèse.

Données: masses molaires en g/mol; M(A) = 46; M(B) = 46; M(E) = 74

Exercice 6:

On hydrolyse une masse $m_i=22,5g$ d'un ester E . En fin de réaction , on obtient un mélange d'acide éthanoïque noté A et de propan-1-ol, noté P .

Après séparation, on obtient une masse m'=2,70q d'acide éthanoïque.

- 1. Écrire les formules semi-développées des espèces A et P . En déduire celle de E .
- 2. Écrire l'équation de cette hydrolyse.
- 3. Calculer le pourcentage d'ester hydrolysé.

Exercice 7:

À 25°C et en présence des ions H^+ , on fait réagir un volume $V_A=20,0ml$ d'acide éthanoïque et un volume $V_M=15,0ml$ de méthanol .

Quelle quantité d'ester obtient-on lorsque la réaction atteint l'état d'équilibre?

Données : à $25^{\circ}C$

- * La constante d'équilibre de la réaction d'estérification est K=4,00
- * La masse volumique de l'acide éthanoïque $\rho_A=1,044g/ml$
- * La masse volumique du méthanol $\rho_M = 0.79g/ml$

Exercice 8:

Afin d'identifier un ester E de formule brute $C_xH_yO_2$ on réalise son analyse; celle-ci fournit les pourcentages massiques suivants : 58,8% de carbone , 31,4% d'oxygène et 9,8% d'hydrogène.

- 1. Déterminer x et y
- 2. On réalise l'hydrolyse de E et on isole l'acide A issu de cette hydrolyse . On prépare une solution à 5,00g/l de l'acide carboxylique A ainsi obtenu. On dose 10,0ml de cette solution par une solution de soude de concentration $6,00\times 10^{-2}mol/l$. En déduire :
 - 2. 1. La masse molaire de A puis sa formule est son nom
 - 2. 2. La formule et le nom de E

Exercice 9:

Le but de cet exercice est d'étudier l'estérification de l'acide éthanoïque avec l'éthanol et de quantifier le rôle des proportions en réactifs sur le rendement .

1.

1. 1. Écrire à l'aide des formules semi-développées, l'équation de la réaction d'estérification étudiée.

- 1. 2. nommer l'ester obtenu
- 2. On considère dans un premier temps un mélange équimolaire de $n_1 = 1,0mol$ d'acide et $n_2 = 1,0mol$ d'alcool. À la fin de la réaction, on montre par dosage qu'il reste une quantité de matière de 0,33mol d'acide.
- $2.\ 1.$ En utilisant la loi d'équilibre , exprimer la constante d'équilibre K , associée à l'équation de la réaction .
 - 2. 2. Montrer que sa valeur est proche de 4,0 .
 - 2. 3. Calculer le rendement de la réaction d'estérification dans ces conditions
- 3. On suppose à présent que le mélange n'est pas stœchiométrique. On fait alors réagir $n_1=1,0mol$ d'acide et $n_2=2,0mol$ d'alcool.
- 3. 1. La réaction d'estérification est athermique . Que signifie ce terme ? Quelle est la conséquence sur la valeur de la constante d'équilibre K ?
 - 3. 2. Montrer que l'avancement à l'équilibre x_{eq} obéit à l'équation :

$$(K-1)x_{eq}^2 - K(n_1 + n_2)x_{eq} + n_1n_2K = 0$$

- 3. 3. Déterminer la valeur de x_{eq}
- 3. 4. En déduire le rendement de l'estérification .
- 4. comparer les deux rendements calculés. Conclure.

Exercice 10:

On mélange dans les proportions stœchiométriques 2,00 mol de méthanol $CH_3 - OH$ et 2,00 mol dacide méthanoïque HCOOH dans un ballon dans lequel on ajoute de l'acide sulfurique concentré et des billes de verre.

On réalise une distillation du mélange réactionnel pendant t=30 min. Le distillat recueilli a une masse m=116 g et une odeur de fruits.

- 1. Écrire la formule de l'ester formé. Le nommer.
- 2. Écrire l'équation de l'estérification. Donner ses caractéristiques.
- 3. Schématiser et légender l'opération de distillation. À quoi sert le réfrigérant à eau?
- 4. Calculer le rendement de la réaction.
- 5. Expliquer la valeur élevée de ce rendement. Cela est-il en contradiction avec la question 2.?

Données:

$$M(C) = 12,0g/mol; M(O) = 16,0g/mol; M(H) = 1,00g/mol$$

	Méthanol	Acide méthanoïque	Eau	Ester
T ébullition (° C	65	100,7	100	31,5