Exercices du chapitre Chimie 9 : Évolution spontanée d'un système

Les équations des réactions seront écrites avec les nombres entiers les plus petits possibles.

Toutes les constantes d'équilibre sont données à 25 °C.

Applications directes

Définir un quotient de réaction

2. Exprimer le quotient d'une réaction

(voir les difficultés du chapitre)

1. Écrire l'équation d'une réaction mettant en jeu les couples acidobasiques suivants, puis donner l'expression du quotient de réaction correspondant :

 $C_6H_5CO_2H$ (aq) / $C_6H_5CO_2^-$ (aq) et H_3O^+ (aq) / H_2O (ℓ)

- 2. Après avoir écrit les demi-équations d'oxydoréduction, écrire une équation de la réaction mettant en jeu les couples suivants, puis donner l'expression du quotient de réaction correspondant :
- **a.** Hg^{2+} (aq) / Hg_2^{2+} (aq) et $S_2O_8^{2-}$ (aq) / SO_4^{2-} (aq)
- **b.** $10_{3}^{-}(aq) / I_{2}(aq)$ et $I_{2}(aq) / I^{-}(aq)$.

3. Calculer un quotient de réaction

Soit une solution contenant du diiode I_2 , des ions iodure I^- , thiosulfate $S_2O_3^{2^-}$ et tétrathionate $S_4O_6^{2^-}$. Ce système peut être le siège d'une réaction d'équation :

$$I_2 (aq) + 2 S_2 O_3^{2-} (aq) = 2 I^- (aq) + S_4 O_6^{2-} (aq)$$

Les concentrations apportées valent :

 $[I_2]_i = 0,20 \text{ mol.} L^{-1}$; $[S_2O_3^{2-}]_i = 0,30 \text{ mol.} L^{-1}$;

 $[I^{-}]_{i} = 0,50 \text{ mol. } L^{-1}$; $[S_{4}O_{6}^{2-}]_{i} = 0,020 \text{ mol. } L^{-1}$.

- 1. Donner l'expression littérale du quotient de réaction correspondant.
- 2. Calculer sa valeur :
- a. dans l'état initial du système ;
- b. dans l'état du système en cours d'évolution tel que :

 $[I_2] = 0.15 \text{ mol. L}^{-1}$

4. Déterminer un quotient de réaction

Le métal fer réagit avec les ions cuivre (II) pour donner du cuivre métallique et des ions fer (II).

On introduit une masse m = 0.89 g de limaille de fer dans un volume V = 500.0 mL d'une solution de sulfate de cuivre (II) de concentration C = 0.050 mol.L⁻¹ et on agite.

- **1.** Écrire l'équation de la réaction qui se produit.
- **2.** En déduire l'expression du quotient de réaction correspondant.
- 3. Déterminer sa valeur :
- a. dans l'état initial du système considéré;
- b. lorsque l'avancement de la réaction vaut 10 mmol.

5. Exprimer un quotient de réaction

Soit un système obtenu en mélangeant :

- $-V_1=15.0$ mL d'une solution d'ions formiate HCO_2^- de concentration : $C_1=0.10$ mol. L^{-1} ;
- V_2 = 15,0 mL d'une solution d'acide nitreux HNO₂ de concentration : C_2 = 0,20 mol . L⁻¹ ;
- V_3 = 10,0 mL d'une solution d'acide formique HCO₂H de concentration : C_3 = 0,10 mol . L⁻¹ ;
- V_4 = 10,0 mL d'une solution contenant des ions nitrite NO $_2^-$ de concentration : C_4 = 0,10 mol . L $^{-1}$.

On considère la réaction acido-basique d'équation :

 $HCO_2^-(aq) + HNO_2(aq) = HCO_2H(aq) + NO_2^-(aq)$

- **1.** Déterminer les concentrations initiales des espèces dans le mélange avant toute évolution.
- 2. Donner l'expression du quotient de réaction.

- 3. Calculer sa valeur :
- a. dans l'état initial du système ;
- b. dans l'état du système en cours d'évolution pour lequel :

 $[HCO_2^-] = 0,020 \text{ mol.L}^{-1}$

Prévoir le sens d'évolution d'un système

(§ 2 du cours)

6. Déterminer le sens d'une transformation

Soit un système contenant de l'ammoniac NH_3 , des ions ammonium NH_4^+ , de l'acide formique HCO_2H et des ions formiate HCO_2^- .

Ce système peut être le siège de la réaction d'équation :

$$HCO_2H$$
 (aq) + NH_3 (aq) = HCO_2^- (aq) + NH_4^+ (aq)

La constante d'équilibre associée à l'équation vaut $K = 3.5 \times 10^{-6}$. La composition initiale du système est :

$$\begin{split} [HCO_2H]_i &= 0,015 \text{ mol.} L^{-1} \; ; \; [NH_3]_i = 0,005 \text{ mol.} L^{-1} \; ; \; \bullet \\ [HCO_2^-]_i &= 0,005 \text{ mol.} L^{-1} \; ; \; [NH_4^+]_i = 0,010 \text{ mol.} L^{-1}. \end{split}$$

- 1. Donner l'expression littérale du quotient de réaction.
- 2. Calculer sa valeur dans l'état initial du système.
- 3. En déduire dans quel sens a lieu la transformation.

7. Prévoir le sens d'une réaction acido-basique

Un système chimique est constitué d'aniline $C_6H_5NH_2$, d'ions anilinium $C_6H_5NH_3^+$, d'ions propanoate $C_2H_5CO_2^-$ et d'acide propanoïque $C_2H_5CO_2H$.

Il peut être le siège de la réaction d'équation :

 $C_2H_5CO_2^-$ (aq) + $C_6H_5NH_3^+$ (aq) = $C_2H_5CO_2H$ (aq) + $C_6H_5NH_2$ (aq)

- **1.** Donner l'expression littérale puis la valeur de la constante d'équilibre associée à l'équation de réaction donnée ci-dessus.
- 2. Comment va évoluer le système de composition :

 $[C_6H_5NH_3^+]_i = 0,200 \text{ mol. L}^{-1};$

 $[C_6H_5NH_2]_i = 1.0 \times 10^{-2} \text{ mol. L}^{-1}$;

 $[C_2H_5CO_2H]_i = 0,100 \text{ mol. L}^{-1};$

 $[C_2H_5CO_2^-]_i = 1.0 \times 10^{-2} \text{ mol. L}^{-1}$.

Données :

 $pK_A (C_2H_5CO_2H / C_2H_5CO_2^-) = pK_{A_1} = 4.8$

 $pK_A (C_6H_5NH_3^+ / C_6H_5NH_2) = pK_{A_3} = 4.5.$

Prévoir le sens d'une réaction d'oxydoréduction

Un système contenant des ions plomb (II) Pb²⁺ et argent Ag⁺, du plomb et de l'argent métalliques, peut être le siège de la réaction d'équation :

$$2 Ag^{+} (aq) + Pb (s) = 2 Ag (s) + Pb^{2+} (aq)$$

- 1. Donner l'expression littérale du quotient de réaction correspondant.
- **2.** La constante d'équilibre de cette réaction vaut 3×10^{31} .

Un système S est obtenu en introduisant dans de l'eau distillée de façon à obtenir V = 100,0 mL de solution :

 $-n_1 = 1.2 \text{ mmol d'ions plomb (II)};$

 $-n_2 = 2,0$ mmol de plomb métallique ;

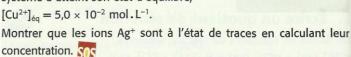
 $-n_3 = 1.0$ mmol d'ions argent;

 $-n_4 = 0.10$ mmol d'argent métallique.

Dans quel sens va évoluer S?

Utilisation des acquis

9. À l'état de traces


On considère la réaction d'équation :

$$2 \text{ Ag}^+ (aq) + Cu (s) = 2 \text{ Ag } (s) + Cu^{2+} (aq)$$

La constante d'équilibre associée vaut $K = 2.2 \times 10^{15}$.

Un bécher contient un volume $V_1 = 20$ mL de solution de nitrate d'argent de concentration $C_1 = 1.0 \times 10^{-1}$ mol. L⁻¹. On ajoute $V_2 = 20$ mL de solution de nitrate de cuivre (II) de concentration $C_2 = 5.0 \times 10^{-2}$ mol. L⁻¹. On obtient une solution dans laquelle coexistent les ions Ag⁺, Cu²⁺ et NO₃⁻.

- 1. Calculer les concentrations initiales [Ag⁺]; et [Cu²⁺];.
- 2. On plonge ensuite dans le bécher un fil de cuivre et un fil d'argent.
- a. Écrire l'expression littérale du quotient de réaction associé à la réaction.
- b. Calculer sa valeur à l'état initial.
- c. Dans quel sens le système évolue-t-il?
- d. Quelle observation expérimentale devrait confirmer l'hypothèse?
- e. Le cuivre est en excès. Lorsque le système a atteint son état d'équilibre,

f. Conclure sur le caractère de la transformation.

D'après bac, Polynésie, 2003

Utilisation de l'avancement

Un système chimique contient de l'acide hypochloreux HOCl et de l'hydroxylamine NH2OH. Il contient aussi des ions hypochlorite ClOet hydroxylammonium NH₃OH⁺ et peut être le siège de la réaction acido-basique d'équation :

$$HOCl(aq) + NH2OH(aq) = ClO-(aq) + NH3OH+(aq)$$

- 1. Donner l'expression littérale puis la valeur de la constante d'équilibre associée à l'équation de cette réaction.
- Comment va évoluer le système dont la composition initiale est donnée ci-dessous :

 $[HOCI]_i = 0.010 \text{ mol. L}^{-1}$; $[CIO^-]_i = 0.25 \text{ mol. L}^{-1}$; $[NH_2OH]_i = 0,0050 \text{ mol. L}^{-1}$; $[NH_3OH^+]_i = 0,020 \text{ mol. L}^{-1}$.

3. a. Répondre à la même question, pour un volume total V = 100 mL, avec la composition initiale suivante :

 $[HOCI]_i = 0,100 \text{ mol. L}^{-1}$; $[CIO^-]_i = 0,0050 \text{ mol. L}^{-1}$; $[NH_2OH]_i = 0.050 \text{ mol. L}^{-1}$; $[NH_3OH^+]_i = 0.010 \text{ mol. L}^{-1}$.

b. Établir un tableau d'avancement.

c. En déduire l'expression du quotient de réaction en fonction de l'avancement x.

d. Calculer $x_{\text{éq}}$.

Données :

 $pK_A (HOCI / CIO^-) = pK_A = 7.5$; $pK_A (NH_3OH^+ / NH_2OH) = pK'_A = 6,1.$

Calcul du pH à l'équilibre*

On introduit dans un erlenmeyer:

- $-V_1 = 25,0$ mL d'acide propanoïque $C_2H_5CO_2H$ (aq) de concentration: $C_1 = 1.0 \times 10^{-2} \text{ mol. L}^{-1}$;
- $-V_2 = 25,0$ mL de propanoate de sodium Na⁺ (aq) + $C_2H_5CO_2^-$ (aq) de concentration: $C_2 = 2.5 \times 10^{-2} \text{ mol. L}^{-1}$;
- $-V_3 = 30.0$ mL de solution de chlorure d'hydroxylammonium NH_3OH^+ (aq) + Cl^- (aq), de concentration : $C_3 = 1.5 \times 10^{-2} \text{ mol. L}^{-1}$; $-V_4$ = 20,0 mL d'hydroxylamine NH₂OH (aq) de concentration : $C_4 = 1.0 \times 10^{-2} \text{ mol. L}^{-1}$.
- 1. Quelle est la nature de la réaction qui peut se produire ? Écrire son équation en considérant que l'acide propanoïque est un réactif.
- Exprimer et calculer la constante d'équilibre de cette réaction.
- 3. Déterminer la valeur du quotient de réaction dans l'état initial de ce système. Comment évolue-t-il ?
- 4. Calculer $x_{\text{éq}}$. SOS

5. Que vaut alors le pH de la solution? 505

Données: $pK_A (C_2H_5CO_2H / C_2H_5CO_2^-) = pK_{A_1} = 4.8$; $pK_A (NH_3OH^+ / NH_2OH) = pK_{A_2} = 6,1.$

12. Calcul de l'avancement à l'équilibre

On introduit de la grenaille de plomb et d'étain dans une solution obtenue en mélangeant :

 $-V_1 = 20,0$ mL d'une solution de nitrate de plomb (II),

Pb²⁺ (aq) + 2 NO₃⁻ (aq), de concentration $C_1 = 4.0 \times 10^{-3} \text{ mol. L}^{-1}$;

 $-V_2 = 80,0$ mL d'une solution de chlorure d'étain (II),

 Sn^{2+} (aq) + 2 Cl⁻ (aq), de concentration $C_2 = 1.0 \times 10^{-3}$ mol.L⁻¹.

- 1. De quelle nature est la réaction qui peut se produire ? Écrire son équation en considérant le métal étain comme réactif.
- **2.** La constante d'équilibre associée à cette équation vaut K' = 2,18. Comment va évoluer le système considéré ?
- 3. Déterminer la valeur de l'avancement à l'équilibre. 505

13. Réaction d'oxydoréduction

Soit un système obtenu en mélangeant :

 $-V_1 = 5.0$ mL d'une solution de sulfate de fer (III),

2 Fe³⁺ (aq) + 3 SO₄²⁻ (aq), de concentration $C_1 = 10.0 \text{ mmol.L}^{-1}$,

 $-V_2 = 10.0$ mL de solution de sulfate de fer (II),

 Fe^{2+} (aq) + SO_4^{2-} (aq), de concentration $C_2 = 10.0$ mmol.L⁻¹,

 $-V_3 = 10.0$ mL d'une solution de diiode, I_2 (aq), de concentration $C_3 = 2,00 \text{ mmol.L}^{-1}$,

 $-V_4 = 10.0$ mL d'une solution d'iodure de potassium,

 K^+ (aq) + I^- (aq), de concentration $C_4 = 200$ mmol. L^{-1} .

- 1. Quelle est la nature de la réaction qui peut se produire ? Écrire son équation en considérant I2 (aq) comme un produit.
- 2. Donner l'expression du quotient de réaction correspondant.
- 3. Déterminer la valeur du quotient de réaction Q_{r,i} dans l'état initial. 505
- **4.** La constante d'équilibre correspondante vaut $K = 1.2 \times 10^5$. Comment va évoluer le système considéré ?

Données : couples mis en jeu :

 Fe^{3+} (aq) / Fe^{2+} (aq) ; I_2 (aq) / I^- (aq).

14. Régulation du pH de l'eau d'une piscine*

L'acide chlorhydrique et l'hypochlorite de sodium sont utilisés dans les piscines (en milieu beaucoup plus acide que l'eau de la piscine, les ions hypochlorite et chlorure réagissent et donnent un dégagement de dichlore, gaz toxique).

L'acide chlorhydrique régule l'acidité ou le pH, tandis que l'hypochlorite de sodium désinfecte. Tous deux constituent des garanties pour notre santé. Non seulement l'eau de la piscine est désinfectée mais, en plus, l'hygiène et la propreté des conduites et des filtres sont maintenues sur l'ensemble de son parcours.

L'hypochlorite de sodium est le désinfectant le plus utilisé.

La régulation du pH est essentielle dans le traitement de l'eau des piscines. En permanence analysé grâce à une sonde, puis corrigé par une pompe (par injection de produit correcteur), le pH est maintenu automatiquement à son niveau idéal (7,2 - 7,6).

- 1. Lors d'un contrôle de pH, la sonde mesure la valeur pH = 8,5. Le pH de cette eau, plus élevé que celui de l'humeur aqueuse de l'œil humain, est responsable de l'irritation des yeux. À ce pH, indiquer l'espèce prédominante du couple HClO /ClO-.
- 2. Calculer le rapport des concentrations en ions hypochlorite et en acide hypochloreux lors de ce contrôle (on ne cherchera pas à déterminer ces deux concentrations).
- 3. Pour rétablir la valeur du pH au niveau « idéal », la pompe injecte 0,10 mol d'acide chlorhydrique dans l'eau de la piscine, sans variation notable du volume V de l'eau contenue dans la piscine. L'équation de la réaction s'écrit :

 $CIO^{-}(aq) + H_3O^{+}(aq) = HCIO(aq) + H_2O(\ell).$

Exprimer sa constante d'équilibre K en fonction de K_A . La calculer.

- 4. L'état initial du système est défini ainsi :
- le volume de l'eau de la piscine est $V = 1.0 \times 10^5 \, \text{L}$;
- on introduit 0,10 mol d'ions H3O+ par ajout d'acide chlorhydrique ;
- le rapport [CIO-]; / [HCIO]; est égal à celui calculé.
- a. Calculer la concentration molaire effective initiale en ions H₃O+ notée [H₃O+]_i.
- b. Calculer le quotient de réaction initial Q_{ri}.
- c. En appliquant le critère d'évolution spontanée, donner le sens d'évolution de la réaction.
- d. À partir de l'expression de la constante d'acidité K_A et du rapport [CIO-]; / [HCIO]; calculé, montrer que le pH de l'eau de la piscine diminue.

Données : couple acide/base :

acide hypochloreux HClO / ion hypochlorite ClO $^-$: p $K_A = 7.5$.

D'après bac, France métropolitaine, septembre 2005