

تمرین ABC:1 مثلث متساوی الساقین وقائم الزاویة فی A بحیث :

- r انشئ صورة المثلث ABC بالدوران 1
- r' بالدوران ABC بالدوران 2. $\frac{\pi}{2}$ الذي مركزه O وزاويته

تمرين2: ABC مثلثا

ننشئ خارجه مثلثين ABD متساويي الساقين وقائمي ACEA الزاوية في

BE = CD: بين أن $(BE) \perp (CD)$: بين أن2

تمرین3: ABC مثلث بحیث القياس الرئيسي للزاوية

الموجهة $\left(\overline{\overrightarrow{AB}},\overline{\overrightarrow{AC}}\right)$ موجب

ننشئ خارج المثلث ABC المربعين ABDE و ACFG $rac{\pi}{}$ نعتبر الدوران r الذي مركزه A و زاوية

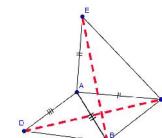
> r(C) 9 r(E) $\sim (1$ 2)بين

 $(\overrightarrow{CA}, \overrightarrow{CE}) \equiv (\overrightarrow{\overrightarrow{GA}, \overrightarrow{GB}})[2\pi]$

 $\left(\overline{\overrightarrow{AB}},\overline{\overrightarrow{AC}}\right) \equiv \frac{\pi}{2}[2\pi]$

[BC] وليكن O منتصف القطعة

- $\frac{\pi}{2}$ الذي مركزه A وزاويته



N في (AB)وليكن Γ الدوران الذي مركزه O و زاوية arVarDeltaنعتبر النقطتين N و M صورتي النقطتين E بالدوران

 $(\overline{\overrightarrow{OA}}, \overline{OB}) = \frac{\pi}{2} [2\pi]$: مربع مرکزه O بحیث ABCD

M و يقطع (AD) و يقطع (BD) و المستقيم يوازي المستقيم يوازي المستقيم

على التوالي. $(EF) \perp (MN)$: أرسم الشكل و بين أن 1

 Γ بالدوران المستقيم (BD) عدد صورة المستقيم

Oباعتبار الدوران \mathcal{V} الذي مركزه

وزاویته $\frac{\pi}{2}$ بین أن المثلث ODE قائم

O الزاوية ومتساوي الساقين في

 $(EF) \parallel (AC)$: بين أن DN = FA : البين أن DN = FA . 3

 $(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AD}}) = \frac{\pi}{2}[2\pi]$: مربع بحیث ABCD

r(D) = B و A الذي مركزه A و P

r'(D) = B و C الذي مركزه r' الذي الدوران r'

 $(\overline{AB},\overline{AC}) = -\frac{\pi}{3}[2\pi]$: تمرین ABC مثلث متساوي الأضلاع بحیث

C الذي مركزه B و يحول P_1 الذي مركزه B الحدد زاوية الدوران

C د الدوران C الذي يحول C الما C و C الما C و C الما C و C الما C و C الما C .

 $\left(\overline{\overrightarrow{AD}}, \overline{AF}\right) = \frac{\pi}{2} [2\pi]$: مربع بحيث ADEF

ننشئ خارجه المثلث CED متساوي الأضلاع وداخله المثلث BEF متساوي الأضلاع

 $rac{\pi}{3}$ الذي مركزه E و زاوية 1.

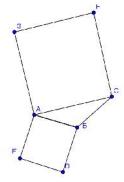
r(D) = C و r(F) = B: بين أن

 $r(A_1) = A$: النقطة بحيث A_1 لتكن A_2

بين أن المثلث AEA_1 متساوي الأضلاع (a

بین أن النقط: A_{l} و D و F مستقیمیة (b

استنتج أن النقط: A و B و مستقيمية (c



 $\left(\overline{\overrightarrow{OA}},\overline{OB}\right) = \frac{\pi}{2}[2\pi]$: مربع مرکزه O بحیث ABCD

 $\overrightarrow{BJ} = \frac{1}{4} \overrightarrow{BC}$ و $\overrightarrow{AI} = \frac{1}{4} \overrightarrow{AB}$: عبيث المستوى بحيث \overrightarrow{I} و \overrightarrow{I}

 $rac{\pi}{2}$ و زاویة O و زاویة \mathcal{V} الدوران الذي مرکزه

 $(OI) \perp (OJ)$: وأن OI = OJ : بين أن

ABC : مثلث قائم الزاوية A ومتساوي الساقين فبحيث [BC] و O منتصف القطعة $\left(\overline{\overline{AB}}, A\overline{C}\right) \equiv \frac{\pi}{2}[2\pi]$

 $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$: جيئ $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{AB}$ وليكن $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}$: وليكن

الأستاذ: عثماني نجيب ص 1