Correction sujet machine à pain

CHOIX DU MOTEUR ET DE SA TRANSMISSION DE PUISSANCE 2

ANALYSE FONCTIONNELLE PRELIMINAIRE 2.1

Question $N^{\circ}1$:

- Mélangeage et pétrissage
- Composants de transmission par lesquels transite la puissance fournie par le moteur jusqu'aux pétrins : poulie motrice 17, courroie motrice 42, poulie intermédiaire 31 et accouplement à crabot pour le pétrin 51a, on rajoute la courroie intermédiaire 43, la poulie du second pétrin 41 et l'accouplement à crabot pour le pétrin 51b.
- Composant qui permet de gérer la commande du moteur : Microcontrôleur.

DÉTERMINATION DES GRANDEURS CONDUISANT AU CHOIX DU MOTEUR

2.2.1 Puissance à fournir pour pétrir la pâte

Question $N^{\circ}2$:

•
$$P_{petr51a} = P_{petr51b} = C_{petr51a}.\omega_{51a/0} = C_{petr51a}.\frac{\pi}{30}.N_{51a/0}$$
 A.N.: $P_{petr51a} = 1,15.\frac{\pi}{30}.150 = 18 \text{ W}$

•
$$P_{petrtot} = P_{petr51a} + P_{petr51b} = 2 \times 18 = 36 \text{ W}$$

•
$$P_{petrtot} = P_{petr51a} + P_{petr51b} = 2 \times 18 = 36 \text{ W}$$
• $Pmecamot = \frac{P_{petrtot}}{\eta_{pc}} = \frac{36}{0.98} = 36,73 \text{ W}$

Question N°3:

- Les moteurs retenus sont : YYH40A-2B et YYH-40A2 car ils peuvent fournir 40W (YYH-60A-4B peut également convenir mais il est surdimensionné).
- Les vitesses de synchronisation de ces moteurs (respectivement de 2700 tr/min et 1500 tr/min) sont bien supérieures à $N_{51/0}$ (150 tr/min). Il n'est donc pas possible de solidariser directement le pétrin à l'arbre moteur. Le constructeur a utilisé un réducteur à poulies et courroies crantées.

Nb. de

primitif

REFERENCE Dents

Voir DR1.

2.2.2 Choix de la transmission et du moteur

Question N°4:

• Moteur YYH-40A-2B :
$$r = \frac{N_{51/0}}{N_{16/0}}$$
 AN : $r = \frac{150}{2700} = 0,056$
• Moteur YYH-40A2 : $r = \frac{N_{51/0}}{N_{16/0}}$ AN : $r = \frac{150}{1500} = 0,1$

Question N°5:

• A.N.: Moteur YYH-40A-2B:
$$Z_{poulrecep} = \frac{15}{0,056} = 268 \ dents$$
 et
• A.N.: Moteur YYH-40A2: $Z_{poulrecep} = \frac{15}{0.1} = 150 \ dents$ et

$$d = \frac{268}{\pi} \times 3 = 256 \text{ mm}$$
$$d = \frac{150}{\pi} \times 3 = 144,3 \text{ mm}$$

Le diamètre primitif est un critère d'encombrement.

Conclusion:

Pour limiter l'encombrement, le moteur retenu est YYH-40A2 (diamètre primitif le plus petit).

2.2.3 <u>Détermination de la largeur de la courroie</u>

Question N°6 :

$$\overline{\eta_{pc}} = \frac{P_{petrtot}}{P_{mecamot}} = \frac{2 \times C_{petr51a} \times \omega_{51a/0}}{C_{mot} \times \omega_{17/0}} = \frac{2 \cdot C_{petr51a} \times r}{C_{mot}} \Rightarrow C_{mot} = \frac{2 \cdot C_{petr51a} \times r}{\eta_{pc}} = \frac{2 \times 1,15 \times 0,1}{0,98} = 0,235 \ N.m$$

Question $N^{\circ}7$:

$$C_{petr51a} = \|\vec{T}\| \times \frac{d_{poulie}}{2} = \frac{\|\vec{T}\| \times p \times Z_{poulie}}{\pi \times 2} \Rightarrow \|\vec{T}\| = \frac{C_{petr51a} \times \pi \times 2}{p \times Z_{poulie}} = \frac{1,15 \times \pi \times 2}{0,003 \times 67} = 35,94 \ N \approx 36 \ N$$

- Le brin tendu de la courroie est soumis à de la traction.
- $\frac{F}{S} \le Rpe = \frac{F}{e \times l} \le Rpe \Rightarrow l \ge \frac{F}{Rpe \times e} = \frac{36}{4,2 \times 1,5} = 5,71 \text{ mm}$
- <u>Choix</u>: Largeur de courroie = 7 mm sinon elle risque de casser.
- 3 PILOTAGE DU MOTEUR
- 3.1 COMMUTATION PERMETTANT DE PILOTER LE MOTEUR

Question $N^{\circ}8$:

- Voir DR1
- Un relais bipolaire est indispensable car il faut pouvoir commuter complètement l'enroulement auxiliaire et C1.
- 3.2 <u>RÉGIMES DU MOTEUR : MODE A, MODE B</u>
- 3.2.1 Phase du cycle de panification et régime moteur

Question N°9:

- Mode A : Phase n° 3 pétrissage. Mode B : Phase n° 2 mélange et n° 4 malaxage.
- 3.2.2 <u>Détermination des durées</u>

Question $N^{\circ}10$:

- Voir DR2.
- 3.3 COMMANDE DE CHANGEMENT DE SENS (ASPECT LOGICIEL DE FT 231)

Question $N^{\circ}11$:

- Voir DR2.
- 3.4 CALCUL ET GESTION DES DUREES
- 3.4.1 Calcul de la durée Δt1, utilisation du compteur d'impulsions (Cil)

Question $N^{\circ}12$:

- Lorsque le contenu du compteur vaut 0, le bit FCil passe à 1 logique (1L), les valeurs prisent par le compteur vont de 0 à FF, puis repasse à 0, et recommence indéfiniment donc compteur modulo 256. la période d'apparition à 0L du bit FCil sera (FH/64)/256=61Hz donc $T_{\rm FCil}$ =16.38ms
- 2min=120s=7326*T 1s=61.05*T

Question N°13:

- Voir DR2.
- On ne peut pas utiliser un μC uniquement au format de 8 bits car la valeur de Y MODE A =7325 nécessite un format de 16 bits (ou au moins 13 bits).

4 CHAUFFAGE DE L'ENCEINTE DE CUISSON 2

4.1 ÉNERGIE CALORIFIQUE (FT32)

Question $N^{\circ}14$:

- Voir DR2.
- La fonction de transfert est à hystérésis, de façon à ce qu'arriver à la température de consigne le système n'oscille pas entre « chauffe » et « ne chauffe pas »

5 MESURE DE LA TEMPERATURE

5.1 <u>COMPOSANT PERMETTANT D'INFORMER LE SYSTEME SUR LA TEMPÉRATURE DE CUISSON</u> *Ouestion N°15 :*

- La thermistance permet d'informer le système sur la température dans l'enceinte de cuisson
- La thermistance est positionnée contre l'enceinte de cuisson à un peu moins de la mi-hauteur du moule et légèrement éloignée de la résistance chauffante. Le but est d'obtenir une image de la température dans le four et non de la résistance chauffante.

5.2 IMAGE ANALOGIQUE DE LA TEMPÉRATURE

Question $N^{\circ}16$:

- Vx=(Rctn/(Rctn+Req))*Vcc
- Voir DR2.

5.3 IMAGE NUMÉRIQUE DE LA TEMPÉRATURE

5.3.1 Quantum pour la cuisson

Ouestion $N^{\circ}17$:

- Nb de valeurs = $2^8 = 256$
- q = 5 / 255 = 19,6 mV. On pourra accepter 5/256!
- Le plus petit écart à distinguer est de 89mV (voir DR2, 0,375- 0,286) et le CAN a un quantum de 19.6mV donc un CAN 8 bits convient.

5.3.2 Valeurs de Vx

Question N°18:

- $X_N=255*(Vx/5)$ et il faut arrondir à l'entier supérieur
- Voir DR2.

5.4 CONTRÔLE LOGICIEL DE LA TEMPÉRATURE DU PAIN

Question N°19:

• Voir DR2.

6 AMÉLIORATION DU PRODUIT

6.1 <u>AMELIORATION DE LA SOLUTION RETENUE POUR EVACUER LA CHALEUR AU NIVEAU DU MOTEUR</u>

Question $N^{\circ}20$:

• On mesure sur le dessin un rayon maximum de 60 mm (échelle 1 : 1) donc un diamètre limite de 120 mm.

On choisit l'hélice avec la référence Ø100-19° car la Ø115-19° a un encombrement trop limite en tenant des tolérances appliquées (± 2 ou 3 mm !!!).

FAN	Λ.		1	9°	2	2°	2!	5°	2	8°	3	1°	
TYPE	A	D	В	С	В	С	В	С	В	С	В	С	
Ø77	76	14 maxi	10	5.5	12	6.5	13.5	7	15	8	17	9	Référence :
Ø86	85	14 maxi	11	6	13	7	14.5	7.5	16	8.5	18	9.5	
Ø100	98	14 maxi	12	6.5	14	7.5	15.5	8	17	9	19	10	FAN TYPE-Angle
Ø115	114	14 maxi	13	7	15	8	16.5	8.5	18	9.5	20.5	11.5	
Ø125	122	14 maxi	14	7.5	16	8.5	17.5	9	20	10.5	22	12	

- Voir DR3
- Voir DR3

Question $N^{\circ}21$:

Il faut rajouter des aérations (fentes) dans le socle et dans la coque extérieure de la machine (en haut et en bas pour faire rentrer l'air frais et ressortir l'air chaud).

6.2 STANDARDISATION DES COURROIES

Question $N^{\circ}22$:

Soit changer l'entraxe entre les poulies soit rajouter un galet tendeur.

7 RENTABILITE POUR L'UTILISATEUR

7.1 IDENTIFICATION DES COMPOSANTS QUI CONSOMMENT DE L'ENERGIE

Question N°23:

- Voir DR3
- Voir DR3
- 7.2 <u>ESTIMATION DE LA PUISSANCE CONSOMMÉE PAR LA FONCTION FT32 « TRANSFORMER L'ÉNERGIE ÉLECTRIQUE EN ÉNERGIE THERMIQUE ».</u>

Question $N^{\circ}24$:

- PRH = $230 \times 230 / 77 \times 1 = 687 \text{ W}$
- 7.3 ESTIMATION DE LA PUISSANCE CONSOMMÉE PAR LA FONCTION FT2 « MÉLANGER ET PÉTRIR LES INGRÉDIENTS »
- 7.3.1 <u>Puissance électrique consommée par le moteur 16</u>

Ouestion $N^{\circ}25$:

• Pmotel = U.I.cos φ = 230 x 0,62 x 0,7 = 99,82 W

7.3.2 Rendement η

Question N°26:

- $\eta = \text{Pmecamot} / \text{Pmotel} = 37,89 / 99,82 = 0,379 \text{ soit donc } \eta = 38 \%$
- Cette valeur est un peu faible, et assez loin du rendement idéal de 100 %. Le moteur n'a pas un très bon rendement, il chauffe beaucoup.

7.4 PUISSANCE DE LA MACHINE A PAIN

Question N°27:

- Ptotale = Pmotel + PRch donc Ptotale = 99,82+687 = 787 W
- Le fabricant indique 800 W. L'écart de 13 W permet d'alimenter les organes électroniques de commande.

Question N°28:

- En fait le sujet indique, en page 3, la séparation des régimes de rotation et du chauffage. La puissance maximale consommée est donc seulement de PRH = 687 W. Avec l'estimation des 13W pour alimenter l'électronique Pmax = 687 + 13 = 700 W
- Sur la courbe du cycle de panification, page 3, la décroissance de la température n'est pas régulière, pendant les phases n° 2, 3, et 4. En effet les pertes thermiques du moteur en rotation ralentissent quelque peu la baisse de température. Le mauvais rendement du moteur devient donc un « atout pour la confection du pain ».
- Les 800 W annoncés correspondent seulement à une puissance théorique, par rapport à la valeur maximale réelle. Ce qui permet au fabricant d'exploiter un argument commercial, vis à vis de la concurrence.

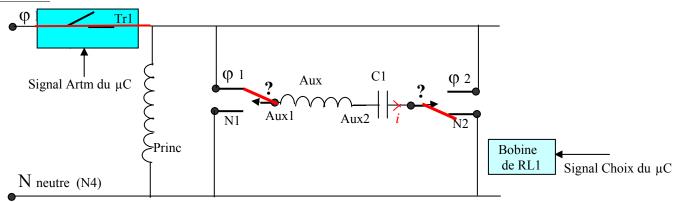
7.5 PRIX D'UN PAIN

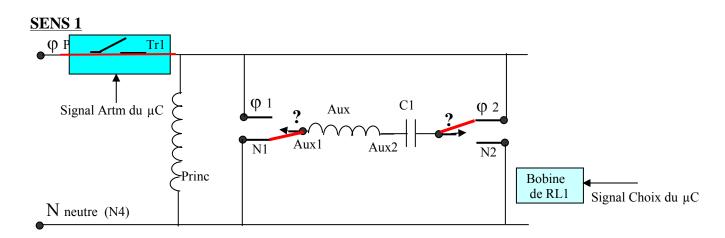
Question N°29:


- Coût relatif à l'amortissement de l'achat de la machine à pain :
 - \circ 910 / 3,5 = 206 pains
 - \circ 99 / 206 = 0,48 €par pain
- Quel est le coût relatif à la consommation électrique sachant que le prix du kWh est de 0,1085 €?
 - O Utilisation de la résistance : 687 Wh
 - O Utilisation de moteur : 99,82 x 0,33 = 33 Wh
 - O Utilisation de l'électronique : 13 x 3,5 = 45,5 Wh

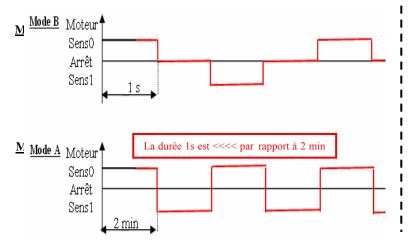
Soit 766 Wh en tout. Coût relatif à la dépense énergétique = 0,0831 €

- Coût total = 0.67 + 0.48 + 0.0831 = 1.23 \in soit 1.23/1125 = 0.0011 \notin g
- <u>Pain artisanal</u>: 1,70 / 400 = 0,00425 €g. Le pain réalisé par la machine à pain est presque quatre fois moins cher que le pain artisanal.


Document réponse DR1


Question n°3

Question n°8



Document réponse DR2

Question n°10

Durée	Δt1	Δt2	Δt3		
Y Mode A	2 mn = 120 s	1s	2 mn = 120 s		
Y Mode B	1 s	1 s	1 s		

Question n°11

Début

Artm = ...1...? Si Choix = 0 Alors Sens = ...1...? Sinon Sens = ...0...?

FinSi

Artm = $\dots 0 \dots$?

Fin

Question n°10 et Question n°11

	Décimal	Hexadécimal	Binaire
Y Mode A (120 s)	7325	1C43 (h)	0001 1100 0100 0011
Y Mode B (1 s)	62	003E (h)	0000 0000 0011 1110

Question nº14

θ	bit Chof θ_L/I_L	Phase de cuisson Chauffe / Ne chauffe pas
50 à 175°C	1L	Chauffe
175 à 185°C	1L	Chauffe
185 à 190°C	0L	Ne chauffe pas
190 à 185°C	0L	Ne chauffe pas
185 à 175°C	0L	Ne chauffe pas
175 à 50°C	1L	Chauffe

Question n°19

Début

Répéter

Mesurer θ_N (°C)

Si $\theta_N \ge Cb_N$

Alors Ne rien faire

Sinon Répéter

Mettre le bit chof à ...1...?

Mesurer θ_N (°C)

Jusqu'à $\theta_{N} \ge Ch_{N}$?

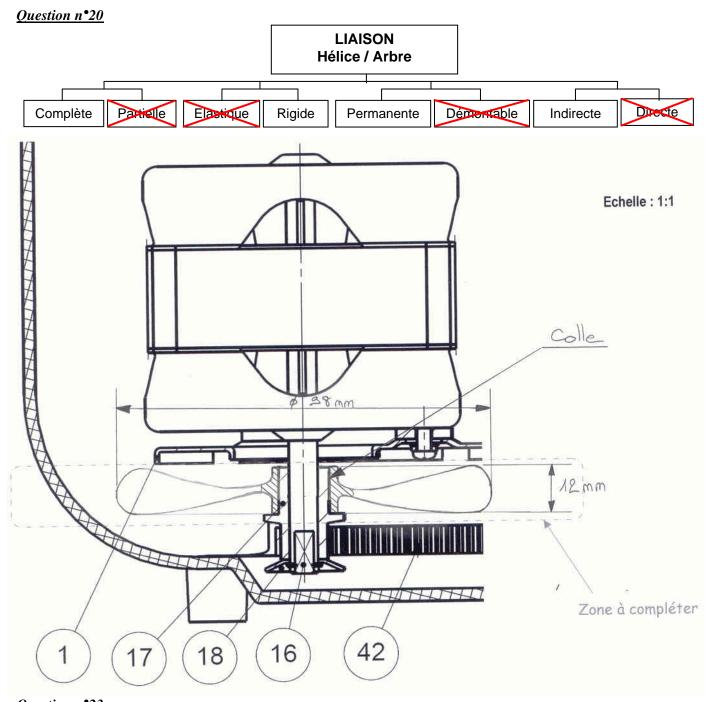
Mettre le bit chof à 0.?

FinSi

Jusqu'à changement de n° de phase?

Fin

Question nº16


Température θ (°C)	25	35	45	50	150	185	200
Retn (kΩ)	100,000	65,340	43,710	36,040	1,836	0,857	0,640
Vx (V)	4,522	4,304	4,027	3,867	0,741	0,375	0,286

Question n°18

Température θ (°C)	25	35	45	50	150	185	200
$Retn(k\Omega)$	100,000	65,340	43,710	36,040	1,836	0,857	0,640
Vx en hexadécimal	(231) \$ E7	(220) \$ DC	(206) \$ CE	(198*) \$ C6	(38*) \$ 26	(19) \$ 13	(14) \$ 0E
$\theta_{\rm N}$ = Vx en binaire	1110 0111	1101 1100	1100 1110	1100 0110	0010 0110	0001 0011	0000 1110

Nota: Les valeurs pour 50 °C et pour 150°C sont arrondies, on acceptera aussi \$C5 et \$25

Document réponse DR3

Question n°23				
Composant	Consomme de la puissance de manière utile au procédé	Consomme de la puissance en perte	Consomme de la puissance de manière non négligeable	Conclusion: Composants à prendre en compte pour le calcul de la puissance consommée
Moteur électrique	□ oui - □ non	□ oui - □ non	□ oui - □ non	□ oui - □ non
Résistance	□ oui - □ non	□ oui - □ non	□ oui - □ non	□ oui - □ non
Carte électronique et affichage	□ oui - □ non	□ oui - □ non	□ oui - □ non	□ oui - □ non
Thermistance	□ oui - □ non	□ oui - □ non	□ oui - □ non	□ oui - □ non

Proposition de barême

Nota: Les points relatifs à chacune des questions ont été ventilés entre les réponses attendues sur la feuille de copie et celles attendues sur les DR. Ainsi la question n°3 est sur 7 points (3 sur la réponse présente sur la copie et 4 sur DR1)

			Pts					Pts
Feui Ile de copi e	Question n°	1	3,5	DR	DR1	Question n°	3	4
е	0	0	0.5			0	0	_
	Question n°		3,5		DD0	Question n°		3
	Question n°		3		DR2	Question n°		3
	Question n°		2			Question n°		2
	Question n°					Question n°		3
	Question n°		2,5			Question n°		2
	Question n°		4			Question n°		2
	Question n°		1			Question n°		3 2
	Question n°		1			Question n°		
	Question n°		0		DR3	Question n°		4
	Question n°		0			Question n°	23	3
	Question n°		2		10	otal DR		31
	Question n°		1					
	Question n°		1					
	Question n°		1		T-1-LO	•	40	_
	Question n°		1		Total Co	•	49	
	Question n°		3		Total Di	₹	31	
	Question n°		1		Total		80	
	Question n°		0					
	Question n°		1,5					_
	Question n°		0,5					
	Question n°		1					
	Question n°		0					
	Question n°		1					
	Question n°		1					
	Question n°		1,5					
	Question n°		2					-
	Question n°		3					-
	Question n°		3					
	Total copie	49	1					

10SIOSP01C Page : 9/9