EXERCICE 1 : SYNTHESE DU SALICYLATE DE METHYLE (6,5 points)

Le Securidaca Longepedunculata est un arbre de 7 à 10 mètres de haut avec une cime claire. Son écorce est épaisse, jaune clair, lisse avec des petites écailles foncées. Ses racines sont très épaisses et odorantes. Ses feuilles sont vert foncé. Ses fleurs sont papilionacées, également très odorantes, de couleur rose à pourpre.
La plante est répandue en Afrique, dans les savanes et les galeries forestières. Elle est constituée, à plus de 90%, de salicylate de méthyle.
L 'huile essentielle extraite de ses racines fraîches et séchées à l'ombre pendant 5 jours contient un seul constituant, le salicylate de méthle. Les propriétés médicinales de cet arbre sont bien connues, surtout contre les morsures de serpent ; au Mali, les préparations en sont nombreuses pour divers remédes.

Ne disposant pas d'écorce de cet arbre, on se propose de réaliser la synthèse du salicylate de méthyle à partir de l'acide salicylique présent naturellement dans l'écorce du saule : c'est un ester dont la synthèse a été réalisée pour la première fois en 1886.

Données :

	Acide salicylique	Méthanol	Salicylate de méthyle	Cyclohexane	Glucose
Formule brute	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$	X	X	$\mathrm{C}_{6} \mathrm{H}_{72}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\mu\left(\mathrm{~g} \cdot \mathrm{~mL}^{-1}\right)$	1,44	0.80	1,17	0,79	X
$\mathrm{T}_{\mathrm{as}}\left({ }^{\circ} \mathrm{C}\right)$	159	-98	$-8,6$	6,5	146
$\mathrm{~T}_{\mathrm{ab}}\left({ }^{\circ} \mathrm{C}\right)$	211	65	223	81	X
Solubilité dans Teau	Faible	Trés bonne	Trés faible	Nulle	Excellente
Solubilité dans le cyclohexane	Trés bonne	Bonne	Bonne		Très faible
M (g.mol ${ }^{-1}$)	$\mathrm{M}_{1}=138$	$\mathrm{M}_{2}=32$	$\mathrm{M}_{3}=152$		

Partie 1: Extraction de l'acide salicylique

Cette extraction se fait par hydrodistillation. On réduit en poudre 435 g d'écorce de saule que f'on place dans un ballon. On ajoute 1 L d'eau distillée et on introduit le ballon dans un montage d'hydrodistillation.
Apres 30 minutes, on recueille le distillat dans lequel l'espece chimique presente est la salicine.
En faisant bouillir le distillat faiblement acidifié, on provoque son hydrolyse; la salicine se décompose en glucose et en acide salicylique.
A lissue de cette opération, on réalise l'extraction de l'acide salicylique par le cyclohexane.
Après isolement de la phase organique de l'ampoule à décanter et évaporation du cyclohexane dans un dispositif adapté, on recueille une masse $m_{1}=8,7 \mathrm{~g}$ d'acide salicylique.
1.1 Identifier, sur la figure 1 ci-dessous le montage d'hydrodistillation. Justifier.

Figure 1

1.2 Compléter le schéma de l'ampoule à décanter, figure 2 en Annexe page 10, à rendre avec la copie en y distinguant les phases aqueuse et organique. Justifier la composition de chaque phase à l'aide des données physicochimiques.

Partie 2 : Etude de la synthèse du salicylate de méthyle

2.1 Donner la formule semi-développée du méthanol. Nommer le groupe caractéristique qu'il contient ainsi que la famille à laquelle il appartient.
2.2 Recopier sur la copie la formule de l'acide salicylique donnée ci-contre ; identifier puis nommer les groupes caractéristiques présents dans cette molécule.
2.3 Ecrire l'équation de la réaction de synthèse du salicylate de méthyle. Justifier l'état physique des réactifs et des produits.
2.4 Donner deux propriétés des transformations associées à ce type de réaction chimique.

On introduit $m_{1}=8,7 \mathrm{~g}$ d'acide salicylique dans un ballion, dans lequel on verse un volume $V=10,0 \mathrm{~mL}$ de méthanol, quelques gouttes d'acide sulfurique et quelques grains de pierre ponce. Après plusieurs heures de chauffage à reflux, on refroidit le mélange réactionnel à température ambiante.
On ajoute environ 100 mL d'eau dans le mélange et on verse dans une ampoule à décanter. On extrait la phase organique avec du cyclohexane: cette phase a une masse volumique proche de celle du cyclohexane et contient l'ester et des traces d'acide.

On lave ensuite plusieurs fois cette phase avec une solution aqueuse d'hydrogénocarbonate de sodium afin d'éliminer les acides restant dans la solution. Il se produit un dégagement gazeux.
On effectue à nouveau un lavage à l'eau. On sépare les constituants de la phase organique par distillation.

Après purification, on récupère une masse $m_{3}=6,1 \mathrm{~g}$ de salicylate de méthyle.
2.5 Expliquer le principe et les avantages du chauffage à reflux.
2.6 Expliquer le rôle de l'acide sulfurique et de la pierre ponce.
2.7 Ecrire l'équation de la réaction entre les ions hydrogénocarbonate $\mathrm{HCO}_{3}{ }^{\text {(aq) }}$) et les acides restants que l'on notera simplement AH. Expliquer alors le rôle des ions hydrogénocarbonate $\mathrm{HCO}_{3}{ }^{\circ}(\mathrm{aq})$ 仡 le dégagement gazeux observé.

Couples mis en jeu: $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2(a q)}, \mathrm{HCO}_{3}{ }^{{ }_{(a q q)}}\right)$, $\left(\mathrm{AH}_{(\mathrm{aqq)}} / \mathrm{A}_{(\text {(aq) }}{ }^{-}\right)$.

Partie 3 : Rendement de la synthèse du salicylate de méthyle

3.1 Déterminer la quantité de matière n_{1} d'acide salicylique introduite dans le ballon.
3.2 Déterminer la quantité de matière n_{2} de méthanol introduite dans le milieu réactionnel.
3.3 En s'aidant éventuellement d'un tableau d'avancement, déterminer les quantités de matière des réactifs et des produits à lissue de la synthèse si l'on considère que la transformation est totale.
3.4 Déterminer la quantité de matière n_{3} d'ester formée expérimentalement, puis le rendement expérimental de la réaction dans ces conditions.

Partie 1: Vecteur champ de pesanteur lunaire

1.1 L'expérience.

On a fété, en 2009, le quarantième: anniversaire du premier alunissage. Le 21 juillet 1969. Neil Armstrong fut le premier homme à poser le pied sur la Lune. Lors de l'une des cinq expéditions lunaires suivantes, l'astronaute d'Apollo 15 Dave Scott réalisa une expérience de physique : il prit dans ses mains levées à hauteur des épaules, un marteau dans l'une et une plume dans l'autre. Puis il les lacha en méme temps. Contrairement à ce qui se serait passé sur Terre, la plume ne se mit pas à voleter doucement mais tomba exactement comme le marreau Sans résistance de l'air pour freiner la plume, les detox objets s'enfoncèrent dans la poussière lunaire exactement au même instant.

Dans l'exercice, lindice M sera attribué au marteau et P à la plume.
1.1.1 Faire le bilan des forces qui s'exercent sur la plume (de masse m_{p}) et sur le marteau (de masse m_{M}) à linstant où ils sont lâchés.
1.1.2 Donner l'expression de ces forces en fonction du vecteur champ de pesanteur lunaire $\xrightarrow[g l_{L}]{1.1 .2}$
1.1.3 En appliquant la deuxième loi de Newton, montrer que ces deux objets ont le même vecteur accélération que l'on précisera.
1.2 Enregistrement de la chute du marteau.

On peut, à partir du document vidéo de la NASA, construire des graphiques relatifs au mouvement du centre d'inertie G du marteau.

A linstant du lâcher, pris comme origine des temps, G est à $h=1,50 \mathrm{~m}$ du sol. Le mouvement est étudié dans le référentiel lunaire, muni du repère $(\mathrm{O}, \vec{i}, \vec{j})$, faxe Ox correspond au sol.

1.2.1 Des graphiques $\mathbf{1}$ et $\mathbf{2}$ ci-aprés, lequel correspond à la trajectoire de G ?

1.2.2 Queiles sont les coordonnées du vecteur accélération \vec{a}_{M} de G dans le repère $(0, \vec{i}, \vec{j})$ ci-dessus?
1.2.3 Quelles sont les coordonnées du vecteur vitesse \vec{v}_{M} de G ?
1.2.4 En déduire l'expression en fonction du temps de la norme, notée v_{m}, du vecteur vitesse \vec{v}_{M} de G. En quoi le graphique $n^{\circ} 3$ ci-dessous est-il compatible avec cette expression?

Graphique 3
1.2.5 A partir de ce même graphique, déterminer la valeur du champ de pesanteur lunaire g_{L}.

Partie 2: Durée de la chute.

2.1 Etablir l'équation horaire du mouvement $y(t)$.
2.2 En déduire la durée de la chute du centre d'inertie G du marteau. La réponse sera vérifiée à partir d'un des graphiques ci-dessus.
2.3 Serait-on arrivé à la méme réponse si on avait raisonné à partir de la plume ? Pourquoi? Dans la description de l'expérience, relever la phrase qui confirme la réponse.

Partie 3 : Marchons sur la lune

Dans tous les documents filmés sur la Lune, on voit les astronautes se déplacer de façon bondissante. Hergé l'avait bien anticipé dans les aventures de Tintin «On a marché sur la Lune».

Pendant la marche, on peut considérer que lors de l'impulsion du pied sur le sol, le centre de gravité G du corps (situé un peu au-dessous du nombril) est projeté vers le haut et retombe à son niveau de départ quand l'autre pied prend contact avec le sol, un pas ayant été alors accompli ; le mouvement de G peutêtre assimilé, pour simplifier, au mouvement du centre de gravité d'un objet lancé vers le haut, avec la vitesse initiale v. G décrit ainsi une trajectoire correspondant au graphique 4 "trajectoire de G lors d'un pas » ci-dessous :

Graphique 4

On se propose de calculer la longueur du bond correspondant à un pas.
\vec{v} est le vecteur vitesse correspondant à la vitesse initiale de valeur $v=2,0 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. II fait avec l'horizontale l'angle $\alpha=60^{\circ}$.

L'étude théorique du mouvement de G conduit aux équations horaires:
$X=(v \cdot \cos \alpha) \cdot t \quad$ et $\quad Y=-\frac{1}{2} \cdot g_{L} \cdot t^{2}+(v \cdot \sin \alpha) \cdot t \ldots$.
(O'X étant l'axe horizontal du repère choisi et correspondant au sol, O'Y l'axe vertical de ce même repère et la date $t=0$ étant prise au début du pas).
3.1 A partir des équations horaires ci-dessus, démontrer, en établissant la fonction $Y(X)$, que la trajectoire de G est une portion de parabole.
3.2 Quelle sont les valeurs de Y au début et la fin du pas dans le repère choisi ? On pourra s'aider du graphique 4 .
3.3 En déduire l'expression littérale de la distance horizontale parcourue par G, correspondant à la longueur d'un pas.
3.4 Faire le calcul numérique, sachant que la valeur du champ de pesanteur lunaire est de $1,62 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. Le résultat est-il compatible avec ce qui peut être déduit du graphique 4 ?

EXERCICE 3 : LE POSTE A GALENE (4 points)

A l'heure où la radio sur Internet est en plein essor, il est intéressant de se pencher sur les balbutiements des émissions radiophoniques.
Le récepteur à cristal, connu sous les noms de poste à galène (cristal de sulfure de plomb), est un récepteur radio à modulation d'amplitude extrêmement simple qui, dès le début du XX siècle, permit la réception des ondes radio émises par exemple depuis la Tour Eiffel. Certains cristaux métalliques tels le sulfure de plomb, ont des propriétés semi-conductrices et sont utilisés dans la fabrication de diodes.
Le récepteur à cristal équipait les stations de T.S.F. des navires, des ballons dirigeables et des avions (TSF = Transmission Sans Fil, le WiFi du siècle passé). Il joua un rôle important pour la diffusion de messages pendant la Première et la Seconde Guerre mondiale où il était possible d'écouter Radio Londres (1500 m) en France. Le but de cet exercice est d'étudier le fonctionnement d'un récepteur à cristal après avoir revu le principe de la production d'un signal modulé en amplitude.

Les 2 parties de cet exercice sont indépendantes

Partie 1 : Etude du signal émis

Le signal émis par l'intermédiaire de l'antenne émettrice, est un signal modulé en amplitude. II peut se propager dans l'air et possède une grande portée. II est produit en multipliant 2 tensions électriques :

- le signal modulant (ou tension modulante), obtenue en convertissant le son à transmettre par l'intermédiaire d'un microphone ; on lui ajoute une tension continue dite de décalage notée U_{0}.
- le signal porteur (ou porteuse).

On utilise pour cela un «multiplieur» comportant deux entrées (voir schéma ci-dessous).

- Sur l'entrée E_{1} : on applique la tension $s(\mathrm{t})=\mathrm{S}_{\mathrm{M}} \cdot \cos (2 \pi f \mathrm{t})$, à laquelle on ajoute la tension continue U_{0}.
- Sur l'entrée E_{2} : on applique la tension $p(\mathrm{t})=\mathrm{P}_{\mathrm{M}} \cdot \cos (2 \pi \mathrm{Ft})$.

Le multiplieur donne en sortie une tension $u(\mathrm{t})$ égale au produit de la tension d'entrée E_{1}, de la tension d'entrée E_{2} et d'un coefficient k , caractéristique du multiplieur.

1.1 Identifier parmi les signaux présentés sur la Figure 3 en Annexe page 11 à rendre avec la copie, celui qui correspond au signal porteur, au signal modulant et au signal modulé en amplitude. Justifier la réponse.
1.2 Donner l'expression littérale de la tension modulée $u(\mathrm{t})$ à partir de celles de $p(\mathrm{t})$ et $s(\mathrm{t})$.
1.3 En posant $m=\frac{S_{M}}{U_{0}}$ et $\mathrm{A}=\mathrm{k} \times \mathrm{P}_{\mathrm{M}} \times U_{0}$, montrer que la tension modulée en amplitude peut se mettre sous la forme : $u(\mathrm{t})=\mathrm{A} \cdot[m \cdot \cos (2 \pi f \mathrm{t})+1] \times \cos (2 \pi \mathrm{Ft})$. Quel nom donne-t-on à m ?

Le terme $\mathrm{A} \cdot[m \cdot \cos (2 \pi f \mathrm{t})+1]$ représente l'amplitude du signal modulé. Pour simplifier l'écriture, il est possible d'écrire le signal modulé sous la forme $\mathrm{U}_{\mathrm{M}}(\mathrm{t}) \times \cos (2 \pi \mathrm{~F} \mathrm{t})$. L'amplitude de la tension modulée $U_{M}(t)$ varie alors entre deux valeurs extrêmes, notées $U_{M \min }$ et $U_{M \max }$.
1.4 Montrer que $\mathrm{U}_{\mathrm{M} \min }=\mathrm{A}(1-\mathrm{m})$ et $\mathrm{U}_{\mathrm{M} \max }=\mathrm{A}(1+\mathrm{m})$
1.5 Montrer que $m=\frac{\mathrm{U}_{\mathrm{M} \text { max }}-\mathrm{U}_{\mathrm{M} \text { min }}}{\mathrm{U}_{\mathrm{M} \text { max }}+\mathrm{U}_{\mathrm{M} \text { min }}}$
1.6 Quelle est la condition à remplir sur la valeur de m pour qu'il n'y ait pas de surmodulation?

Partie 2 : Etude du récepteur à galène

Le circuit de réception est constitué de 3 modules ou étages :

Détecteur d'enveloppe (Dipôle «RC parallèle »)

Filtre «RC série»

2.1 Le circuit d'accord (dipôle «LC parallèle »)

II est constitué d'un condensateur de capacité variable C monté en dérivation avec une bobine d'inductance $\mathrm{L}=8 \mathrm{mH}$.
2.1.1 Quel est le rôle de ce circuit?
2.1.2 Que représente la valeur 1500 m qui caractérisait Radio Londres ?
2.1.3 Déterminer la fréquence d'émission de Radio Londres.

Donnée : célérité des ondes électromagnétiques $\mathrm{c}=3.10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
2.1.4 La fréquence propre du dipôle «LC parallèle» est $f_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$. En déduire la valeur de la capacité du condensateur que l'on doit utiliser pour recevoir cette fréquence d'émission.
2.1.5 Parmi les trois tensions représentées en Annexe page 11 à rendre avec la copie, quelle est celle représentant s_{1} ? Justifier la réponse.

2.2 Le détecteur d'enveloppe (dipôle «RC parallèle »)

2.2.1 Quel est le rôle de la diode D ? On pourra s'aider d'un dessin si nécessaire.
2.2.2 Quel est le rôle du circuit «RC parallèle»? Identifier parmi les trois tensions représentées sur l'Annexe page 11 à rendre avec la copie, quelle est celle représentant s_{2}.

2.3 Filtre «RC série»

Quel est le rôle du circuit «RC série» ? On pourra s'aider d'un dessin si nécessaire.

ANNEXE A RENDRE AVEC LA COPIE

EXERCICE 1 : SYNTHESE DU SALICYLATE DE METHYLE

Figure 2

Figure 3

Schéma 2

Schéma 3

