🗷 Exercice 1 :

Ecrire les nombres complexes sous forme algébrique :

① -
$$z_1 = \frac{1}{2-3i}$$

①
$$-z_1 = \frac{1}{2-3i}$$
 :: ② $-z_2 = \frac{1-i}{3+i}$:: ③ $-z_3 = \frac{2i}{1-2i} + \frac{(1+i)^2}{i}$

$$\textcircled{3} - z_4 = (3+i)(1-5i) \qquad \text{;;} \qquad \textcircled{5} - z_5 = \frac{3-6i}{3+i} + \frac{4}{3-i} \qquad \text{;;} \qquad \textcircled{6} - z_6 = \left(\frac{4-6i}{2-3i}\right)\left(\frac{1+3i}{3+2i}\right).$$

🗷 Exercice 2 :

Donner une forme trigonométrique de chacun des nombres complexes suivants :

② -
$$z_2 = \sqrt{6} - \sqrt{2}i$$

:: ② -
$$z_2 = \sqrt{6} - \sqrt{2}i$$
 :: ③ - $z_3 = -\frac{1}{2\sqrt{3}} - \frac{1}{2}i$

(4)
$$-z_4 = (1-i)(-\sqrt{3}+i)$$
 ;; (5) $-z_5 = \frac{1+\sqrt{3}i}{1+i}$;; (6) $-z_6 = (1+i)^5$.

(5)
$$-z_5 = \frac{1+\sqrt{3}i}{1+i}$$

6 -
$$z_6 = (1+i)$$

Exercice 3:

Soit heta un réel de l'intervalle $\left|-\frac{\pi}{2};\frac{\pi}{2}\right|$. Donner une forme trigonométrique de chacun des nombres complexes suivants :

$$z_1 = \sin \theta + i \cos \theta$$

$$z_1 = \sin \theta + i \cos \theta$$
 ;; $z_2 = -\sin \theta + i \cos \theta$;; $z_3 = -\sin \theta - i \cos \theta$

$$_{3} = -\sin\theta - i\cos\theta$$

$$z_4 = 1 + i \tan \theta$$

$$z_5 = 1 + \cos\theta + i\sin\theta$$

$$z_4 = 1 + i \tan \theta$$
 ;; $z_5 = 1 + \cos \theta + i \sin \theta$;; $z_6 = \frac{1 + i \tan \theta}{1 - i \tan \theta}$

Exercice 4:

Soit z un nombre complexe tel que : $z \neq 1$.

On pose :
$$Z = \frac{z-2i}{z-1}$$
 , avec $(x,y) \in \mathbb{R}^2$: $z = x+iy$

- ① Déterminer : Re(Z) et Im(Z) en fonction de x et y.
- ${f 2}$ Déterminer l'ensemble ig(Dig) des points Mig(zig) tels que Z est un réel .
- ${rac{3}{3}}$ Déterminer l'ensemble (ζ) des points M(z) tels que Z est un imaginaire pur .

Exercice 5:

Le plan complexe est rapporté à un repère orthonormal direct $\left(O,\vec{u},\vec{v}
ight)$.

On considère les points A ,B et C d'affixes respectives: $z_A=2-2i\sqrt{3}$, $z_B=2+2i\sqrt{3}$ et $z_C=8$.

- \bigcirc Donner une forme trigonométrique des nombres complexes $z_{\scriptscriptstyle A}$, $z_{\scriptscriptstyle B}$ et $z_{\scriptscriptstyle C}$.
- ②- Placer les points A ,B et C sur le repère $(0,\vec{u},\vec{v})$.

3 - On pose :
$$Z = \frac{z_A - z_C}{z_B - z_C}$$

- a Déterminer |Z| et arg(Z).
- b En déduire la nature du triangle ABC.

Exercice 6:

On pose :
$$z_1 = 1 + i$$
 , $z_2 = \sqrt{3} + i$ et $z_3 = \frac{z_1}{z_2}$.

 \bigcirc - Donner une forme trigonométrique des nombres complexes z_1 , z_2 et z_3 .

②- Déduire :
$$\cos\left(\frac{\pi}{12}\right)$$
 et $\sin\left(\frac{\pi}{12}\right)$.

③ - On pose :
$$z_4 = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} - \sqrt{2})$$
.

Montrer que :
$$\left(\frac{z_4}{4}\right)^{2016} \in \mathbb{R}$$
 .

🖎 Exercice 7 :

On considère dans le plan complexe les points A ,B et C d'affixes respectives :

$$z_A = -\sqrt{2}$$
 , $z_B = 1 + i$ et $z_C = 1 - i$.

- ① Placer les points A ,B et C sur un repère (O,\vec{u},\vec{v}) .
- ②- a Déterminer le module et l'argument $\frac{z_A-z_B}{z_A-z_C}$.
 - b Déduire une mesure de l'angle orienté $\left(\overline{\overrightarrow{AC},\overrightarrow{AB}}\right)$.
- ${rac{3}{3}}$ a Déterminer la forme algébrique puis une forme trigonométrique du quotient : $rac{z_{_A}-z_{_B}}{z_{_A}}$

b - Déduire :
$$\cos\left(\frac{\pi}{8}\right)$$
 et $\sin\left(\frac{\pi}{8}\right)$.

Exercice 8:

On considère dans le plan complexe les points A ,B d'affixes respectives :

 $z_{\scriptscriptstyle A}=i \quad , z_{\scriptscriptstyle B}=\frac{-\sqrt{3}}{2}+\frac{1}{2}i \quad \text{et le point C d'affixe} \quad z_{\scriptscriptstyle C} \quad \text{tel que C le symétrique du point B par } \\ \text{rapport à l'axe des réels} \ .$

- ① Placer les points A ,B et C sur un repère $\left(O,\vec{u},\vec{v}\right)$.
- ②- Déterminer le module et l'argument $\frac{z_{\scriptscriptstyle C}-z_{\scriptscriptstyle B}}{z_{\scriptscriptstyle A}-z_{\scriptscriptstyle B}}$.
- 3 Déterminer l'ensemble des points M(z) tels que : $\left|\frac{z-z_A}{z-z_B}\right|=1$.
- **4** On pose : $Z = \frac{z_A z_C}{z_B z_C}$

Déterminer |Z| et arg(Z).