

Résumé de leçon (Les Suites Numérique)

La Suite Arithmétique et La Suite Géométrique : $(n; p) \in \mathbb{N}$ et $p \leq n$

•	La Suite Arithmétique	La Suite géométrique
Définition	$\forall n \in \mathbb{N} \; ; \; U_{n+1} - U_n = r$	$\forall n \in \mathbb{N} ; U_{n+1} = q \times U_n$
Le terme général	$U_n = U_p + (n-p)r$	$U_n = q^{(n-p)} \times U_p$
•	$U_n = U_0 + n \cdot r$	$U_n = q^n \times U_0$
$S_n = U_0 + U_1 + \dots + U_n$	$=\frac{(n+1)}{2}\times(U_n+U_0)$	$= U_0 \times \frac{(1 - q^{n+1})}{(1 - q)}$

La suite majorée ; minorée ; bornée

 (U_n) est une suite majorée par $M \Leftrightarrow \forall n \in \mathbb{N}; U_n \leqslant M$

 (U_n) est une suite minorée par $m \Leftrightarrow \forall n \in \mathbb{N}; U_n \geqslant m$ (U_n) est une suite bornée par m et M; $\Leftrightarrow \forall n \in \mathbb{N}$; $m \leqslant U_n \leqslant M$

La Monotone d'une suite 3

Si $\forall n \in \mathbb{N}$; $U_n \leq U_{n+1}$ alors (U_n) est une suite croissante.

Si $\forall n \in \mathbb{N}$; $U_{n+1} \leq U_n$ alors (U_n) est une suite décroissante.

Convergence de la suite (q^n)

* Si q > 1 alors $\lim_{n \to +\infty} U_n = +\infty$ * Si q = 1 alors $\lim_{n \to +\infty} U_n = 1$

* Si 1 > q > -1 alors $\lim_{n \to +\infty} U_n = 0$ * Si $q \le -1$ alors la Suite (q^n) n'admet pas de limite.

La limite de la suite (n^{α}) où $\alpha \in \mathbb{Q}$

* Si $\alpha > 0$ alors $\lim_{n \to +\infty} n^{\alpha} = +\infty$ * Si $\alpha < 0$ alors $\lim_{n \to +\infty} n^{\alpha} = 0$

6 Convergence d'une suite

- * Si (U_n) est croissante et majorée alors la suite (U_n) est convergente
- * Si (U_n) est croissante et négative alors la suite (U_n) est convergente
- * Si (U_n) est croissante et non majorée alors la suite (U_n) est divergente
- * Si (U_n) est décroissante et minorée alors la suite (U_n) est convergente
- * Si (U_n) est décroissante et positive alors la suite (U_n) est convergente
- * Si (U_n) est décroissante et non minorée alors la suite (U_n) est divergente

7 Critères de convergence

$$\left\{ \begin{array}{c} V_n \leq U_n \leq W_n \\ \text{lim} V_n = \lim_{l \to \infty} W_n = l \end{array} \right\} \Rightarrow \lim_{l \to \infty} U_n = l \text{ avec } l \in \mathbb{R}$$

$$\left| \begin{array}{c} |U_n - l| \leq \alpha V_n \text{ avec } \alpha > 0 \\ \text{si } \text{et} \\ \lim_{l \to \infty} V_n = 0 \end{array} \right\} \Rightarrow \lim_{l \to \infty} U_n = l \text{ avec } l \in \mathbb{R}$$

$$\left| \begin{array}{c} V_n \leq U_n \\ \text{Si } \text{et} \\ \lim_{l \to \infty} V_n = +\infty \end{array} \right\} \Rightarrow \lim_{l \to \infty} U_n = +\infty \quad \left\{ \begin{array}{c} V_n \leq U_n \\ \text{Si } \text{et} \\ \lim_{l \to \infty} V_n = -\infty \end{array} \right\} \Rightarrow \lim_{l \to \infty} V_n = -\infty$$

8 Limite d'une suite (U_n) définie par $U_{n+1} = f(U_n)$

f est fonction définit et continue sur l'intervalle I et $f(I)\subset I$ Si U_n convergente et $\left. egin{array}{c} U_0\subset I \\ U_{n+1}=f(U_n) \end{array}
ight\}$ alors $\lim_{+\infty}U_n=l$ avec l est une solution de l'équation f(x)=x