Résumé de Cours Limite et continuité

PROF : ATMANI NAJIB 2BAC BIOF: PC et SVT

LIMITE ET CONTINUITE

I)LIMITE D'UNE FONCTION EN UN POINT COMPLEMENTS (limite à droite et à gauche et opérations sur les limites)

1)Résultats

Soient P et Q deux fonction polynôme et $x_0 \in \mathbb{R}$ et $a \in \mathbb{R}^*$ alors :

1)
$$\lim_{x \to x_0} P(x) = P(x_0)$$
 2) $\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$ si $Q(x_0) \neq 0$

3)
$$\lim_{x \to x_0} \sin x = \sin x_0$$
 4) $\lim_{x \to x_0} \cos x = \cos x_0$

5)
$$\lim_{x \to x_0} \tan x = \tan x_0 \text{ si } x_0 \neq \frac{\pi}{2} + k\pi \quad k \in \mathbb{Z}$$

6)
$$\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$$
 si $x_0 \ge 0$ 7) $\lim_{x \to 0} \frac{\sin x}{x} = 1$

8)
$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$
 9) $\lim_{x \to 0} \frac{\sin ax}{ax} = 1$ 10) $\lim_{x \to 0} \frac{\tan ax}{ax} = 1$

11)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

Limite de la somme

lim f	l	Ł	Ł	+ ∞	- ∞	+ ∞
lim g	ℓ '	+	- 8	+ 8	- 00	- 8
lim f + g	l +l'	+ ∞	- ∞	+ ∞	- ∞	Forme ind

Ces propriétés sont vraies si x tend vers a+; a-; $+\infty$ ou $-\infty$

Limites des produits :

lim f	Į.	ℓ >0	£>0	£<0	£<0	0	0	+ ∞	- 00	+ ∞
lim g	ℓ'	+ ∞	- 00	+ ∞	- 00	+∞	- 00	+ ∞	- 00	- 00
lim f × g	$\ell \ell'$	+ ∞	- 00	- 00	+ ∞	Forme ind	Forme ind	+ ∞	+ ∞	- 00

Limites des inverses :

lim f	ℓ ≠0	0+	0-	+ ∞	- ∞
$\lim \frac{1}{f}$	$\frac{1}{\ell}$	+ ∞	- ∞	0	0

Limites des quotients

lim f	Ł	Ł	ℓ ≠ O	± ∞	0	± ∞
lim g	ℓ'≠0	±∞	0	l	0	± ∞
$\lim \frac{f}{g}$	$\frac{\ell}{\ell'}$	0	± 8	±∞	?	?

2) Limites à droite et à gauche : RAPPELLES

Exemple : (Limites à droite et à gauche)

Soit la fonction
$$f: x \mapsto \frac{(x+1)^2}{|x^2-1|}$$

Etudier la limite de f en $x_0 = -1$

Solution : Déterminons $\lim_{\substack{x \to -1 \\ x \succ -1}} f(x)$ et $\lim_{\substack{x \to -1 \\ x \prec -1}} f(x)$?

$$\forall x \in \mathbb{R} - \{-1, 1\}$$

Si:
$$-1 \prec x \prec 1$$
: $f(x) = \frac{(x+1)^2}{|x+1||x-1|} = -\frac{x+1}{x-1}$

Donc:
$$\lim_{\substack{x \to -1 \\ x \to -1}} f(x) = \lim_{\substack{x \to -1 \\ x \to -1}} -\frac{x+1}{x-1} = 0$$

Si:
$$x < -1$$
: $f(x) = \frac{(x+1)^2}{|x+1||x-1|} = \frac{x+1}{x-1}$

Donc:
$$\lim_{\substack{x \to -1 \\ x \neq -1}} f(x) = \lim_{\substack{x \to -1 \\ x \neq -1}} \frac{x+1}{x-1} = 0$$

donc:
$$\lim_{\substack{x \to -1 \\ x \to -1}} f(x) = \lim_{\substack{x \to -1 \\ x \to -1}} f(x) = 0$$
 donc: $\lim_{x \to -1} f(x) = 0$

II) CONTINUITE D'UNE FONCTION NUMERIQUE EN UN POINT :

1) Définition: Soit f une fonction définie sur un intervalle de centre a. On dit que la fonction f est continue en a si elle admet une limite finie en a et $\lim_{x \to a} f(x) = f(a)$

2) continuité à droite et à gauche

Définition :1) Soit f une fonction définie sur un intervalle de la forme [a, a+r[où r>0 On dit que la fonction f est continue à droite de a si elle admet une limite finie à droite en a et

$$\lim_{x \to a^+} f(x) = f(a) :$$

2) Soit f une fonction définie sur un intervalle de la forme a-r; a où r>0

On dit que la fonction f est continue à gauche de a si elle admet une limite finie à gauche en a

et
$$\lim_{x \to a} f(x) = f(a)$$

3) Prolongement par continuité

Théorème et définition : Soit f une fonction dont l'ensemble de définition est D_f ; a un réel tel que

$$a \notin D_f$$
 et $\lim_{x \to a} f(x) = l$ (finie)

La fonction
$$f$$
 définie par :
$$\begin{cases} f(x) = f(x); si...x \neq a \\ f(a) = l \end{cases}$$

Est une fonction continue en a et s'appelle un prolongement par continuité de la fonction f en a

Prof/ATMANI NAJIB <u>1</u>

III) OPERATIONS SUR LES FONCTIONS CONTINUES.

1) Continuité sur un intervalle

Définition: Soit f une fonction dont le domaine de définition est D_f , soit]a, b[un intervalle inclus dans Df

- 1) On dit que f est continue sur l'ouvert] a, b [si elle est continue en tout point de]a, b[
- 2) On dit que f est continue sur [a, b] si elle est continue sur]a, b[et à droite de a
- 3) On dit que f est continue sur [a, b] si elle est continue sur a, b, à droite de a et à gauche de b

2) Opérations sur les fonctions continues

Propriétés : 1)Si f et g sont deux fonctions continues en aalors :a) f + g b) $f \times g$ c) |f| Sont des fonctions continues en a

2)Si f et g sont deux fonctions continues en a et $g(a) \neq 0$ alors

a)
$$\frac{1}{g}$$
 b) $\frac{f}{g}$ sont des fonctions continues en a .
3) Si f une fonction continue en a et $f(a) \ge 0$ alors:

$$\sqrt{f}$$
 est continue en a

Remarque:La propriété précédente reste vraie soit à droite de a, à gauche de a ou sur un intervalle I (En tenant compte des conditions)

Propriétés : 1) Tout fonction polynôme est continue sur \mathbb{R} 2) Les fonctions *sin* et *cos* sont continue sur \mathbb{R}

3) Continuité de la composition de deux fonctions.

Théorème : Soient f une fonction définie sur un intervalle *I* et *g* une fonction définie sur un intervalle *J* tels que : $f(I) \subset J$ et x_0 un élément de I.

- 1) Si f est continue en x_0 et g continue en $f(x_0)$ alors gof est continue en x_0 .
- 2) Si f est continue I et g continue en f(I) alors $g \circ f$ est continue *I*.

4) Limite de **vou**

Théorème: Soit u une fonction définie sur un intervalle pointé de centre x_0 telle $\lim_{x \to x_0} u(x) = l$

si v est continue en l alors $\lim_{x\to x_0} (v \circ u)(x) = v(l)$

IV) IMAGE D'UN INTERVALLE PAR UNE **FONCTION CONTINUE**

1) Image d'un segment (intervalle fermé) :

Théorème : (Admis)

L'image d'un segment [a, b] par une fonction continue est le segment [m, M] où: $m = \min_{x \in [a;b]} f(x)$ et $M = \max_{x \in [a;b]} f(x)$

Cas particulier:

1) Si f est continue croissante sur [a, b] alors :

$$f([a, b]) = [f(a), f(b)]$$

2) Si f est continue décroissante sur [a, b] alors : f([a, b]) = [f(b), f(a)]

2) Image d'un intervalle.

2.1 Théorème général

L'image d'un intervalle par une fonction continue est un intervalle.

Remarque : L'intervalle I et son image f(I) par une fonction continue n'ont pas nécessairement la même

2.2 Cas d'une fonction strictement monotone

a) f continue et strictement croissante sur L'intervalle Iet $a \in I$ et $b \in I$

$$f([a;b]) = [f(a);f(b)] \text{ et } f([a;b]) = \begin{bmatrix} f(a);\lim_{\substack{x \to b \\ x \prec b}} f(x) \\ f([a;b]) = \lim_{\substack{x \to a \\ x \succ a}} f(x);f(b) \end{bmatrix} \text{ et } f([a;b]) = \lim_{\substack{x \to a \\ x \succ a}} f(x);\lim_{\substack{x \to a \\ x \prec b}} f(x)$$

b) f continue et strictement décroissante sur L'intervalle I et $a \in I$ et $b \in I$

$$f([a;b]) = [f(b);f(a)]$$
 et $f([a;b]) = \lim_{\substack{x \to b \\ x \prec b}} f(x);f(a)$

$$f(]a;b]) = \left[f(b); \lim_{\substack{x \to a \\ x > a}} f(x) \right] = \left[\lim_{\substack{x \to b \\ x < b}} f(x); \lim_{\substack{x \to a \\ x > a}} f(x) \right]$$

V) THEOREME DES VALEURS INTERMEDIERE TVI. 1)Cas général

Théorème T.V.I : Soit *f* une fonction continue sur [a, b]. Pour tout λ comprise ntre f(a) et f(b)il existe au moins un $c \in [a, b]$ tel que $f(c) = \lambda$

2) Cas f strictement monotone.

Théorème T.V.I (cas **f** strictement monotone) Soit f une fonction continue strictement monotone

sur [a, b].

Pour tout λ compris entre f(a) et f(b) il existe un et un seul $c \in [a, b]$ tel que $f(c) = \lambda$

Remarque: L'expression " Pour tout λ compris entre f(a) et f(b) il existe un et un seul $c \in [a, b]$ tel que $f(c) = \lambda$ "peut-être formulée comme :

" Pour tout λ compris entre f(a) et f(b) l'équation $f(x) = \lambda$ admet une solution unique dans [a, b] 3) Corolaires

Corolaire1 (T.V.I) :Soit *f* une fonction continue sur [a, b] .Si $f(a) \times f(b) < 0$ il existe au moins un $c \in [a, b]$ tel que f(c) = 0

Corolaire2 (T.V.I):

Soit *f* une fonction continue strictement monotone sur [a, b] .Si $f(a) \times f(b) < 0$ il existe un et un seul c dans [a, b] tel que f(c) = 0

VI) FONCTIONS COMPOSEES ET FONCTIONS RECIPROQUES.

1) Théorème : Soit f une fonction définie continue et strictement monotone sur un intervalle *I*, On a *f* admet une fonction réciproque f^{-1} définie de

<u>2</u> Prof/ATMANI NAJIB

I = f(I) vers I.

donc f est une bijection de I vers f(I)

D'où f admet une fonction réciproque f^{-1} de

J = f(I) vers I et on a :

$$\begin{cases} f(y) = x \\ y \in I \end{cases} \Leftrightarrow \begin{cases} y = f^{-1}(x) \\ x \in f(I) \end{cases}$$

$$(f \circ f^{-1})(x) = x \quad \forall x \in f(I)$$

$$(f^{-1} \circ f)(y) = y \quad \forall y \in I$$

2) Propriété de la fonction réciproque

Propriété 1 : Si f admet une fonction réciproque f^{-1} de J = f(I) vers I alors f^{-1} à la même monotonie sur J que celle de f sur I.

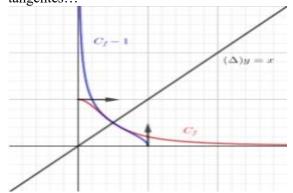
Propriété 2: Si f admet une fonction réciproque f^{-1}

de J = f(I) vers I alors $\left(C_{f^{-1}}\right)$ et $\left(C_{f}\right)$ sont symétriques

par rapport à :(Δ) y = x

Remarque:

La symétrie des deux courbes concerne toutes leurs composantes ; les asymptotes ; les tangentes et demitangentes...



3) La fonction racine **n** – é **me**

3.1 Définition et règles de calculs

Propriété et définition :

Soit n un élément de \mathbb{N}^* ; la fonction :

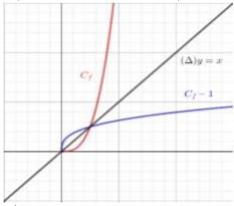
 $f: x \to x^n$ est une fonction continue strictement croissante sur \mathbb{R}^+ elle admet donc une fonction réciproque f^{-1} de $f(\mathbb{R}^+) = \mathbb{R}^+$ vers \mathbb{R}^+

La fonction réciproque f^{-1} s'appelle la fonction racine n – éme et se note $\sqrt[n]{}$

Conséquence de la définition :

- 1)La fonction $\sqrt[n]{x}$ est définie sur \mathbb{R} +
- 2) $\forall x \in \mathbb{R}^+ \sqrt[n]{x} \ge 0$
- $3)(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)\sqrt[n]{x} = y \Longleftrightarrow x = y^n$
- 4)La fonction $\sqrt[n]{x}$ est continue sur \mathbb{R}^+ strictement croissante.
- $5)(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) \sqrt[n]{x} = \sqrt[n]{y} \iff x = y$
- 6)($\forall x \in \mathbb{R}^+$) ($\forall a \in \mathbb{R}^+$) $\sqrt[n]{x} \ge a \iff x \ge a^n$

- 7)($\forall a \in \mathbb{R}^+$) $\sqrt[n]{x} \le a \Leftrightarrow 0 \le x \le a^n$
- $8)(\forall x \in \mathbb{R}^+) \left(\sqrt[n]{x}\right)^n = \sqrt[n]{x^n} = x$
- 9)($\forall x \in \mathbb{R}^+$)($\forall p \in \mathbb{N}$) $\left(\sqrt[n]{x}\right)^p = \sqrt[n]{x^p}$
- 10) $\lim_{x \to +\infty} \sqrt[n]{x} = +\infty$
- 11)Si $\lim_{x \to x_0} u(x) = +\infty$ alors $\lim_{x \to x_0} \sqrt[n]{u(x)} = +\infty$
- 12)Si $\lim_{x \to x_0} u(x) = l$ et $l \ge 0$ alors $\lim_{x \to x_0} \sqrt[n]{u(x)} = \sqrt[n]{l}$
- 13)La courbe de la fonction $\sqrt[n]{}$



Règle de calcul:

- 1) $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+) \sqrt[n]{x \times y} = \sqrt[n]{x} \times \sqrt[n]{y}$
- 2) $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+}) \sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$
- 3) $(\forall x \in \mathbb{R}^+)(\forall n \in \mathbb{N}^*)(\forall p \in \mathbb{N}^*) \quad \sqrt[n]{\sqrt[p]{x}} = \sqrt[n \times p]{x}$
- 4) $(\forall x \in \mathbb{R}^+)(\forall n \in \mathbb{N}^*)(\forall p \in \mathbb{N}^*) \sqrt[n]{x} = \sqrt[np]{x^p}$ (à prouver)

Remarque:

- 1) $(\forall x \in \mathbb{R} +) \sqrt[2]{x} = \sqrt{x}$
- 2) $(\forall x \in \mathbb{R}^+) \sqrt[1]{x} = x$

3.2 Résolution de l'équation $x^n = a$

Exemples : Résoudre dans $\mathbb R$ les équations suivantes :

1)
$$x^5 = 32$$
 2) $x^7 = -128$ 3) $x^4 = 3$ 4) $x^6 = -8$

Solutions :1) $x^5 = 32$ **donc** x > 0

$$x = \sqrt[5]{32} \Leftrightarrow x = \sqrt[5]{2^5} \Leftrightarrow x = 2$$
 donc: $S = \{2\}$

2) $x^7 = -128$ donc x < 0

Donc:
$$x = -\sqrt[7]{128} \Leftrightarrow x = -\sqrt[7]{2^7} \Leftrightarrow x = -2$$

Donc : $S = \{-2\}$

3)
$$x^4 = 3 \iff x = \sqrt[4]{3}$$
 ou $x = -\sqrt[4]{3}$

Donc: $S = \left\{ -\sqrt[4]{3}, \sqrt[4]{3} \right\}$

4)
$$x^6 = -8$$

On a
$$x^6 \ge 0$$
 et $-8 < 0$ donc $S = \Phi$

3.3 L'expression conjuguai : On sait que

$$a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$$

et
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$
 II en résulte :

$$a-b = \frac{a^3 - b^3}{a^2 + ab + b^2}$$
 et $a+b = \frac{a^3 + b^3}{a^2 - ab + b^2}$

Par suite :($\forall x \in \mathbb{R}^+$)($\forall y \in \mathbb{R}^{*+}$)

$$\sqrt[3]{x} - \sqrt[3]{y} = \frac{x - y}{\left(\sqrt[3]{x}\right)^2 + \sqrt[3]{x}\sqrt[3]{y} + \left(\sqrt[3]{y}\right)^2}$$

 $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^{*+})$

$$\sqrt[3]{x} + \sqrt[3]{y} = \frac{x+y}{\left(\sqrt[3]{x}\right)^2 - \sqrt[3]{x}\sqrt[3]{y} + \left(\sqrt[3]{y}\right)^2}$$

4) Puissance rationnelle :

4.1 Puissance entier:

Rappelle : Soit x un réel et n un entier naturel non nul on a

$$x^{n} = x \times x \times ... \times x \text{ et } (x \neq 0) \frac{1}{x^{n}} = x^{-n}$$

4.2 Puissance rationnelle

Propriété: Pour tout réel $x \ge 0$ et pour tout entier non nul

$$q$$
 on pose : $\sqrt[q]{x} = x^{\frac{1}{q}}$

Définition : Soit x un réel positif et r un rationnel $(r \in \mathbb{Q})$;

$$r = \frac{p}{q}$$
 où $p \in \mathbb{Z}$ et $q \in \mathbb{N}*$ on pose :

$$x^r = x^{\frac{p}{q}} = \left(\sqrt[q]{x}\right)^p$$

Propriétés : Soit x et y deux réels positifs, r et r' des rationnels on a :

$$1. \quad x^{r+r'} = x^r \times x^{r'}$$

2.
$$x^{r \times r'} = (x^r)^{r'} = (x^{r'})^r$$

3.
$$x^{-r'} = \frac{1}{x^{r'}}$$
 $(x \neq 0)$

4.
$$x^{r-r'} = \frac{x^r}{x^{r'}} \quad (x \neq 0)$$

$$5. \quad (xy)^r = x^r y^r$$

$$6. \quad \left(\frac{x}{y}\right)^r = \frac{x^r}{y^r}$$

C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

