🗷 Exercice 1 :

Le plan complexe est rapporté à un repère orthonormé direct (O,\vec{u},\vec{v}) .

On considère les points A ,B et C d'affixes respectives: a=i , $b=\frac{-\sqrt{3}}{2}+\frac{1}{2}i$ et $c=\frac{-\sqrt{3}}{2}-\frac{1}{2}i$.

- \bigcirc Donner une forme trigonométrique des nombres complexes a , b et c .
- ②- Placer les points A ,B et C sur le repère (O, \vec{u}, \vec{v}) .
- ③ On pose : $Z = \frac{c-b}{c}$

a - Déterminer |Z| et arg(Z).

b - Déterminer l'ensemble des points M(z) tels que : $|z-i| = |z + \frac{\sqrt{3}}{2} - \frac{1}{2}i|$.

Exercice 2:

Le plan complexe est rapporté à un repère orthonormé direct $\left(O,\vec{u},\vec{v}
ight)$.

On considère les points A ,B et C d'affixes respectives: a=2 , $b=\sqrt{2}\left(-1+i\right)$ et $c=\sqrt{2}\left(-1-i\right)$ Et soit E d'affixe e le milieu de segment [AB].

- \bigcirc Donner une forme trigonométrique des nombres complexes a , b et c .
- ②- Placer les points A ,B et C sur le repère (O,\vec{u},\vec{v}) .
- 3 Montrer que le triangle OAB est isocèle, puis déduire un mesure de l'angle orienté $(\overrightarrow{u}, \overrightarrow{OE}).$
- lack 4 Déterminer e puis |e| .
- (5) Déduire : $\cos\left(\frac{3\pi}{8}\right)$ et $\sin\left(\frac{3\pi}{8}\right)$.

Exercice 3:

On considère les nombres complexe suivants : a=2i , $b=\sqrt{3}+i$ et $c=\sqrt{2}+\sqrt{2}i$.

- \bigcirc Donner une forme trigonométrique des nombres complexes a , b et c .
- ② Vérifier que : $a^{12} = b^{12}$.
- ③- a Déterminer la forme algébrique puis une forme trigonométrique du quotient : $\frac{c}{L}$.
 - b Déduire : $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
- 4 On considère les points A ,B et C d'affixes respectives: a, b et c.
 - a Montrer que O est centre de cercle circonscrit au triangle ABC.
 - b Déterminer un mesure de l'angle orienté $(\overrightarrow{OB}, \overrightarrow{OC})$.

🖎 Exercice 4:

On considère les nombres complexe suivants :

$$a=1-i$$
 , $b=\frac{\sqrt{3}+1}{2}+i\frac{\sqrt{3}-1}{2}$ et $c=\frac{\sqrt{3}-1}{2}+i\frac{\sqrt{3}+1}{2}$

①- a - Déterminer la forme algébrique puis une forme trigonométrique des quotients :

$$\frac{c}{a}$$
 et $\frac{b}{a}$.

b - Déduire la forme trigonométrique des nombres complexes b et c .

②- Dans le plan complexe est rapporté à un repère orthonormé direct (O,\vec{u},\vec{v}) .

On considère les points A(a), B(b) et C(c).

a - Montrer que le quadrilatère OABC est un parallélogramme.

b - Montrer que :
$$(OB) \perp (AC)$$
 .

c - Déterminer un mesure de l'angle orienté $\left(\overline{\overrightarrow{BC},\overrightarrow{BA}}\right)$

d - Déterminer l'ensemble des points M(z) tels que : |z-c|=|z-a| .

🖎 Exercice 5:

Le plan complexe est rapporté à un repère orthonormé direct $\left(O,\vec{u},\vec{v}
ight)$.

On considère les points A ,B et C d'affixes respectives: a=1, b=1-2i et c=-2+2i . Et soit C le cercle de diamètre BC.

①- a - Déterminer ω l'affixe du point Ω le centre de cercle (C).

b - Calculer R le rayon de cercle (C).

②- Soit D le point d'affixe : $d = \frac{3+9i}{4+2i}$.

a – Déterminer la forme algébrique du nombre complexe d .

b - Montrer que : $D \in (C)$.

③- Soit E le point d'affixe e , tel que $: E \in (C)$ et $\left(\overrightarrow{\overline{\Omega A}}, \overrightarrow{\Omega E}\right) \equiv \frac{\pi}{4}[2\pi]$.

a - Déterminer le module et l'argument du nombre complexe $e+rac{1}{2}$.

b - En déduire que : $e = \frac{5\sqrt{2}-2}{4} + \frac{5\sqrt{2}}{4}i$.

🖎 Exercice 6 :

On considère dans Le plan complexe les points A et B d'affixes respectives:

$$a = \sqrt{3} + 1 + i(\sqrt{3} - 1)$$
 et $b = \sqrt{3} - 1 + i(\sqrt{3} + 1)$.

①- Montrer que : $a^2 = 4(\sqrt{3} + i)$ et que : $b = i\overline{a}$.

②- Déterminer la forme trigonométrique nombre complexe $4\left(\sqrt{3}+i\right)$.

3 - Déduire la forme trigonométrique nombres complexes a et b .

(4) - Calculer : $\arg\left(\frac{b}{a}\right)$, déduire la nature triangle OAB.