> <u>Définition</u>:

Soit n un entier naturel non nul

La fonction : $x\mapsto x^n$ est continue et strictement monotone sur l' intervalle $\left[0;+\infty\right[$ elle admet une fonction réciproque définie sur $\left[0;+\infty\right[$, nommée racine n-ième et que l'on note $\sqrt[n]{}$ et on a : $\forall\left(x;y\right)\in\mathbb{R}^2_+$ $\sqrt[n]{}x=y\Leftrightarrow x=y^n$

Propriétés:

$$\forall (x; y) \in \mathbb{R}^{2}_{+} \quad \forall n \in \mathbb{N}^{*}$$

$$\bullet \quad \sqrt[n]{x^{n}} = x$$

$$\bullet \quad (\sqrt[n]{x})^{n} = x$$

$$\bullet \quad \sqrt[n]{x} = \sqrt[n]{y} \Leftrightarrow x = y$$

$$\bullet \quad \sqrt[n]{x} > \sqrt[n]{y} \Leftrightarrow x > y$$

$$\forall (x; y) \in \mathbb{R}^{2}_{+} \quad \forall (m; n) \in (\mathbb{N}^{*})^{2}$$

$$\bullet \quad \sqrt[n]{x} \times \sqrt[n]{y} = \sqrt[n]{x} \times y$$

$$\bullet \quad \left(\sqrt[n]{x}\right)^{m} = \sqrt[n]{x^{m}}$$

$$\bullet \quad \frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}} \qquad \left(y \neq 0\right)$$

$$\bullet \quad \sqrt[n]{y} = \sqrt[n]{x} \qquad \left(y \neq 0\right)$$

$$\bullet \quad \sqrt[n]{x} = \sqrt[n \times m]{x}$$

$$\bullet \quad \sqrt[n]{x} = \sqrt[n \times m]{x}$$

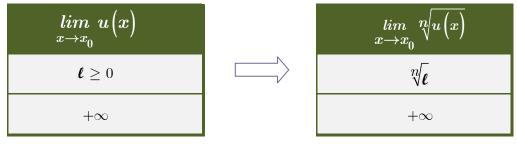
$$\bullet \quad \sqrt[n]{x} = \sqrt[n \times m]{x}$$

Ensemble de définition :

L'ensemble de définition de la fonction $x \mapsto \sqrt[n]{u\left(x\right)}$ est :

$$D = \left\{ x \in \mathbb{R} / x \in D_u et \, u(x) \ge 0 \right\}$$

Limites:



Ces résultats restent valable, à droite en x_0 , à gauche en x_0 , en $+\infty$ et en $-\infty$

Continuité :

Si f une fonction définie ,positive et continue sur un intervalle I alors la fonction $x\mapsto \sqrt[n]{u\left(x\right)}$ est continue sur I

Dérivée :

Si u une fonction strictement positive et dérivable sur un intervalle I alors la fonction : $x \mapsto \sqrt[n]{u\left(x\right)}$ est dérivable sur I

et on
$$a$$
 :
$$\forall x \in I \qquad \left(\sqrt[n]{u\left(x\right)}\right)' = \frac{u'\left(x\right)}{n\sqrt[n]{\left[u\left(x\right)\right]^{n-1}}}$$

> Résolution de l'équation $x \in \mathbb{R}$ $x^n = a$ $(a \in \mathbb{R})$:

	n un entier naturel impair	n un entier naturel pair non nul
a>0	$S = \left\{ \sqrt[n]{a} \right\}$	$S = \left\{ -\sqrt[n]{a}, \sqrt[n]{a} \right\}$
a = 0	$S = \{0\}$	$S = \{0\}$
a < 0	$S = \left\{ - \sqrt[n]{ a } \right\}$	$S=\varnothing$

> Puissance rationnelle d'un nombre réel strictement positif:

Soit un x réel strictement positif et un r nombre rationnel

On pose
$$\ r=\displaystyle\frac{p}{q}$$
 ($p\in\mathbb{Z}^*$ et $q\in\mathbb{N}^*$)

On a:
$$x^r = x^{\frac{p}{q}} = \sqrt[q]{x^p}$$

Remarques:

•
$$\sqrt[n]{u(x)} = (u(x))^{\frac{1}{n}}$$

$$\left(\sqrt[n]{u(x)} \right)' = \left(\left(u(x) \right)^{\frac{1}{n}} \right)' = \frac{1}{n} \times \left(u(x) \right)' \times \left(u(x) \right)^{\frac{1}{n} - 1}$$

Pour tous réels x et y positifs et pour tous rationnelles r et r'

•
$$x^r \times x^{r'} = x^{r+r'}$$

$$\bullet \quad \left(x^r\right)^{r'} = x^{r \times r'}$$

$$\bullet \quad \left(x \times y \right)^r = x^r \times y^r$$

$$\bullet \quad \left(\frac{x}{y}\right)^r = \frac{x^r}{y^r}$$

$$\bullet \quad \frac{1}{r^r} = x^{-r}$$

$$\bullet \quad \frac{x^r}{x^{r'}} = x^{r-r'}$$