Suites numériques

Exercice 1

Calculer les trois premiers termes des suites

$$1) \quad U_n = 2^n - n$$

1)
$$U_n = 2^n - n$$
 2) $V_n = \sqrt{1 - \frac{1}{n}}$

3)
$$W_0 = 2$$
 et $W_{n+1} = \frac{2W_n + 1}{W_n + 2}$

4)
$$T_1 = 3$$
 et $T_n = \frac{1}{2}T_{n-1} + 2$

On considère la suite $\left(U_{_{n}}\right)_{_{n}}$ définie par :

$$U_{_{0}} = 4 \ et \ U_{_{n+1}} = \frac{2}{5}U_{_{n}} + 3$$

Montrer que $(U_n)_n$ est majorée par 5

On considère la suite $(U_n)_n$ définie par :

$$U_{_{0}}=-rac{1}{2} \ et \ U_{_{n+1}}=rac{3U_{_{n}}+2}{2U_{_{n}}+3}$$

- 1) montrer que $(U_n)_n$ est minorée par -1
- 2) montrer que $(\forall n \in \mathbb{N})$ $U_n < 1$

Exercice 4

On considère la suite $(U_n)_n$ définie par :

$$U_{_{0}}=-1 \ et \ \ U_{_{n+1}}=rac{9}{6-U_{_{n}}}$$

- 1) montrer que $\left(\forall n \in \mathbb{N}\right)$ $U_n < 3$
- 2) étudier la monotonie de la suite $\left(U_{_{n}}\right)_{..}$
- 3) on pose $V_n = \frac{1}{U 3}$
- a) montrer que $(V_n)_n$ est une suite arithmétique
- b) Déterminer $\boldsymbol{U_n}$ en fonction de \boldsymbol{n}

Exercice 5

Soit $\left(U_{_{n}}\right)_{_{n}}$ une suite arithmétique telle que :

$$U_{_{3}} = 5 \ et \ U_{_{11}} = 29$$

- 1) déterminer la raison r de la suite $\left(U_{n}\right)$
- 2) calculer la somme $S=U_{_0}+U_{_1}+\ldots\ldots+U_{_{11}}$

Exercice 6

Soit la suite $\left(U_{_{n}}\right)_{_{n}}$ définie par : $\left\{U_{_{n+1}}=\frac{4}{4-U_{_{n}}}\right\}$

- 1) montrer que $\left(\forall n \in \mathbb{N}\right)$ $U_{_{n}} < 2$
- 2) étudier la monotonie de la suite $(U_n)_n$
- 3) on pose $V_n = \frac{2}{U 2}$
- a) montrer que $\left(V_{n}\right)_{n}$ est une suite arithmétique
- b) Déterminer $\boldsymbol{U_{\scriptscriptstyle n}}$ en fonction de n
- c) Calculer $S_n = \sum_{k=n-1}^{k=n-1} V_k$ en fonction de n

Exercice 7

On considère la suite $(U_n)_n$ définie par :

$$U_{_{0}}=2\ et\ U_{_{n+1}}=2U_{_{n}}-1$$

- 1) montrer que $(\forall n \in \mathbb{N})$ $U_n > 1$
- 2) étudier la monotonie de la suite (U_n)
- 3) on pose $X_n = U_n 1$
- a) montrer que $\left(X_{\scriptscriptstyle n}\right)_{\scriptscriptstyle n}$ est une suite géométrique
- b) déterminer $\boldsymbol{U_{\scriptscriptstyle n}}$ en fonction de n
- c) calculer la somme $S_n = \sum_{k=0}^{n-1} U_k$

On considère la suite $\left(U_{n}\right)_{n}$ définie par :

$$U_{_{0}}=-\frac{3}{4}\ et\ U_{_{n+1}}=\frac{2U_{_{n}}-1}{2U\ +5}$$

- 1) a) vérifier que $(\forall n \in \mathbb{N})$ $U_{n+1} = 1 \frac{6}{2U + 5}$
 - b) prouver que $(\forall n \in \mathbb{N}) 1 < U_n < -\frac{1}{2}$
- 2) étudier la monotonie de la suite $(U_n)_n$
- 3) on pose $V_n = \frac{2U_n + 1}{U_n + 1}$
- a) montrer que $\left(V_n\right)_n$ est une suite géométrique
- b) déterminer $\boldsymbol{U_{\scriptscriptstyle n}}$ en fonction de \boldsymbol{n}
- 4) a) montrer que:

$$\left(\forall n \in \mathbb{N}\right) \left| U_{n+1} + \frac{1}{2} \right| \le \frac{6}{7} \left| U_n + \frac{1}{2} \right|$$

b) montrer par récurrence q

$$(\forall n \in \mathbb{N})$$
 $\left| U_n + \frac{1}{2} \right| \le \frac{1}{4} \left(\frac{6}{7} \right)^n$