1

1) montrer que $\left(\forall k \in \mathbb{N}^*\right)$ $\frac{1}{k+1} \le \ln\left(k+1\right) - \ln k \le \frac{1}{k}$

Fonctions logarithmes

- 2) on considère la suite $\left(U_n\right)_n$ définie par $\left(\forall n\in\mathbb{N}\ ^*\right)$ $U_n=\sum_{k=n}^{n=2n}\frac{1}{k}$
- a) montrer que $\left(\forall n \in \mathbb{N}^*\right)$ $U_n \frac{1}{n} \le \ln 2 \le U_n \frac{1}{2n}$
- b) déduire que $\left(U_{n}\right)_{n}$ est convergente et déterminer sa limite
- 3) on pose $x_n = \left(\sum_{k=1}^{k=n} \frac{1}{k}\right) \ln n$ et $y_n = \left(\sum_{k=1}^{k=n} \frac{1}{k}\right) \ln \left(n+1\right)$ pour tout entier naturel non nul n
- a) montrer que $(\forall n \in \mathbb{N}^*)$ $y_n \leq x_n$
- b) montrer que $\left(x_n\right)_n$ et $\left(y_n\right)_n$ sont adjacentes
- On considère la fonction f définie sur $\left]0,+\infty\right[$ par : $f\left(x\right)=\ln x-2\arctan x$
- 1) calculer les limites $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to 0} f(x)$
- 2) calculer la dérivée f'(x) et étudier le sens de variation de f puis dresser le tableau des variations
- 3) a) prouver que l'équation f(x) = 2n admet une unique solution notée a_n
 - b) vérifier que $\Big(\forall n \in \mathbb{N}\Big)$ $e^{2n} < a_n$ et déterminer $\lim_{n \to +\infty} a_n$
- 4) montrer que $\left(\forall n \in \mathbb{N}\right)$ $\ln\left(\frac{a_n}{e^{2n}}\right) = 2\arctan\left(a_n\right)$ en déduire que $\lim_{n \to +\infty} \frac{a_n}{e^{2n}} = e^{\pi}$
- 5) montrer que $\left(\forall n \in \mathbb{N}\right)$ $\ln\left(\frac{a_{_{n}}}{a_{_{n+1}}}\right) = 2\left(\arctan\left(a_{_{n}}\right) \arctan\left(a_{_{n+1}}\right) 1\right)$ en déduire $\lim_{n \to +\infty} \frac{a_{_{n}}}{a_{_{n+1}}}$
- Soit a un réel de \mathbb{R}^{+*}

on considère la suite $U_n = \sum_{k=0}^{k=n} \frac{1}{a+k}$ et la fonction $f(x) = \ln(x+a)$

- 1) montrer que $\left(\forall k \in \left\{0, 1, \dots, n-1\right\}\right)$ $\frac{1}{a+k+1} \le f\left(k+1\right) f\left(k\right) \le \frac{1}{a+k}$
- 2) prouver que $\left(\forall n \in \mathbb{N}^*\right)$ $\ln\left(1+\frac{n}{a}\right) \leq U_n \leq \frac{1}{a} + \ln\left(1+\frac{n}{a}\right)$
- 3) déterminer les limites $\lim_{n \to +\infty} U_n$ et $\lim_{n \to +\infty} \frac{U_n}{n}$
- On considère la fonction f définie sur $\left[0,+\infty\right[$ par : $f\left(x\right)=\frac{x^2}{x^2+1}+\ln\left(x+1\right)$
- 1) a) montrer que f est strictement croissante sur $\left[0,+\infty\right[$
 - b) calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ donner une interprétation géométrique du résultats
- 2) tracer la courbe de la fonction $\,f\,$
- 3) soit n un entier de $\operatorname{\mathbb{N}}^*$. on considère l'équation $\left(E_{_n}\right)-nf\left(x\right)=1$
- a) montrer que $\left(E_{_{n}}\right)$ admet une unique solution $x_{_{n}}$

- ig| b) montrer que f admet une réciproque $f^{^{-1}}$ et dresser le tableau des variations de $f^{^{-1}}$
- c) déduire la monotonie de la suite $\left(x_{_{n}}\right)_{_{n}}$ puis déterminer sa limite
- 4) calculer $\lim_{x\to 0} \frac{f(x)}{x}$ en déduire $\lim_{n\to +\infty} nx_n$

Fonctions logarithmes

Soit n un entier tel que $n \ge 2$.

on considère la fonction f_n définie sur $\left]0,+\infty\right[$ par : $f_n\left(x\right)=\frac{\ln x}{n}-\frac{1}{x^n}$

- 1) étudier le sens de variation de $f_{\scriptscriptstyle n}$ et donner le tableau des variations
- 2) montrer que l'équation $f_n(x) = 0$ admet une unique solution u_n
- 3) a) prouver que $(\forall n \ge 2)$ $\sqrt[n]{e} < u_n$
 - b) montrer que $\Big(\forall x \in \mathbb{R} \Big)$ $e^x \ge x+1$ en déduire que $\Big(\forall n \ge 2 \Big)$ $u_n < e$
- 4) a) prouver que $f_{n+1}\left(u_{n}\right)=\dfrac{\ln u_{n}}{\left(n+1\right)u_{n}}\Bigg(u_{n}-1-\dfrac{1}{n}\Bigg)$ et déduire que $f_{n+1}\left(u_{n}\right)>0$
- b) montrer que $\left(u_n\right)_n$ est décroissante et convergente
- 5) on pose $V_{_n}=\ln u_{_n}$ pour tout entier n de $\operatorname{\mathbb{N}}^*-\left\{1\right\}$
- a) vérifier que $\left(\forall n \geq 2\right)$ $n V_n = \ln\left(\frac{n}{V_n}\right)$
- b) montrer que $\left(\forall n \geq 2\right)$ $\frac{\ln n}{n} < V_n < 2\frac{\ln n}{n}$ et déterminer $\lim_{n \to +\infty} V_n$ puis déduire que $\lim_{n \to +\infty} u_n = 1$
- Soit n un entier de $\mathbb N$ tel que $n \geq 2$. on considère la fonction $f_n\left(x\right) = -x^2 + 2 + n \ln x$
- 1) calculer les limites $\lim_{x \to +\infty} f_n(x)$ et $\lim_{x \to 0} f_n(x)$
- 2) calculer la dérivée $f_{\scriptscriptstyle n}^{\scriptscriptstyle f}\left(x\right)$ et dresser le tableau des variations de $f_{\scriptscriptstyle n}$
- 3) a) on pose $g(x) = x \ln x x + 2$
- (i) calculer $g^{\,\prime}(x)$ puis donner le tableau des variations de g
- (ii) en déduire que $(\forall x \in]0, +\infty[)$ g(x) > 0
- b) vérifier que $f\left(\sqrt{\frac{n}{2}}\right)>0$ et prouver que l'équation $f_{_n}\left(x\right)=0$ admet deux solutions $U_{_n}$ et $V_{_n}$ (on prend $U_{_n}< V_{_n}$)
- c) calculer $\lim_{n \to +\infty} V_n$ et montrer que $\lim_{n \to +\infty} \frac{\ln V_n}{\ln n} = \frac{1}{2}$
- 4) a) prouver que $\left(\forall n\geq 2\right)\ U_{_{n}}<1$
 - b) vérifier que $f_{n+1}\left(U_n\right)=\ln\left(U_n\right)$ puis déduire que $\left(U_n\right)_{n\geq 3}$ est croissante
- c) déterminer $\ln U_n$ en fonction de $n-et-U_n$ et montrer que $\Big(\forall n\geq 2\Big)-\frac{2}{n}\leq \ln U_n\leq -\frac{1}{n}$ puis déterminer $\lim_n U_n$