Exercice (1)

Suites numériques

On considère la suite $\left(U_n\right)_{n\geq 1}$ définie par : $U_n=\sum_{k=1}^{k=n}\frac{1}{k^2}$

- a) Montrer que $(\forall k \ge 2)$ $\frac{1}{k^2} \le \frac{1}{k(k-1)}$
- b) déduire que $(U_n)_{n>1}$ est majorée

Exercice (2)

Soit $(U_n)_{n\geq 1}$ la suite telle que : $U_n = \sum_{k=1}^{k=n} \frac{1}{n+k}$

- 1) montrer que $(\forall n \in \mathbb{N}^*)$ $U_n \ge \frac{1}{2}$
- 2) étudier la monotonie de la suite $\left(U_{n}\right)_{n\geq 1}$
- 3) montrer que $(U_n)_{n\geq 1}$ est convergente

Exercice (3)

On considère la suite $(x_n)_n$ définie par : $x_0 = 1$ et $x_{+1} = \sqrt[3]{1 + \frac{1}{2}x_n^3}$

- 1) montrer que $(\forall n \in \mathbb{N})$ $0 < x_n < 2$
- 2) montrer que $(x_n)_n$ est croissante puis qu'elle est convergente
- 3) on pose $U_n = x_n^3 2$ pour tout entier naturel n montrer que $(U_n)_n$ est géométrique et calculer $\lim_{n \to +\infty} x_n$

Exercice (4)

Soit n un entier de $\operatorname{\mathbb{N}}^*$. on considère la fonction F_n définie sur]0,1]

Par: $F_n(x) = (1-x)(x+1)^n$

- 1) étudier le sens de variation de F_n
- 2) montrer que l'équation $F_n(x) = 1$ admet un unique solution x_n

- 3) a) montrer que $\left(\forall x \in \left] 0, 1 \right[\right) \ F_{n+1} \left(x \right) < F_{n} \left(x \right)$
 - b) montrer que $\left(\forall n \in \mathbb{N}^*\right)$ $x_{n+1} \in \left[\frac{n-1}{n+1}, 1\right]$
 - c) déduire la monotonie de $(x_n)_n$ et déterminer $\lim_{n \to +\infty} x_n$

Exercice (5)

Soit n un entier tel que $n \geq 3$. on considère la fonction f_n définie sur \mathbb{R}^+ par :

$$f_n(x) = x^n + x^2 + x - 1$$
 et soit α la solution positif de $x^2 + x - 1 = 0$

- 1) sans déterminer α montrer que $0 < \alpha < 1$
- 2) montrer que l'équation $f_n(x) = 0$ admet dans \mathbb{R}^+ un unique solution notée U_n
- 3) montrer que $(\forall n \geq 3)$ $0 < U_n < \alpha$
- 4) montrer que $(U_n)_n$ est croissante et convergente
- 5) montrer que $(\forall n \geq 3)$ $U_n^n + (U_n \alpha) \left(U_n + \frac{1}{\alpha} \right) = 0$ en déduire $\lim_{n \to +\infty} U_n$

Exercice(6)

soit a un réel et on considère la suite $(U_n)_n$ telle que :

$$U_0 = a - \frac{1}{2}$$
 et $U_{n+1} = U_n^2 + (1 - 2a)U_n + a^2$

f: المعرفة بما يلي est la fonction définie par : $f(x) = x^2 + (1-2a)x + a^2$

- 1) a) vérifier que f(x)-a=(x-a)(x-a+1)
 - b) déduire que $f([a-1,1]) \subset [a-1,a]$
- 2) montrer que $(\forall x \in \mathbb{R})$ $f(x) \ge x$
- 3) a) montrer que $(\forall n \in \mathbb{N})$ $a-1 < U_n < a$
 - b) étudier la monotonie de $(U_n)_n$ en déduire qu'elle est convergente
 - c) déterminer la limite $\lim_{n \to +\infty} U_n$