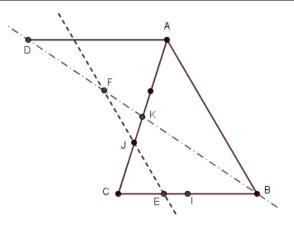
Indications : Toutes les réponses doivent être justifiées. L'usage de la calculatrice est autorisé.

Exercice 1: (Correction)

2. Soit p' la projection sur $\left(BC\right)$ parallèlement à $\left(AB\right)$ On a p'(A)=B, p'(J)=E et p'(C)=C et d'après les hypothèses on a $\overrightarrow{AJ}=\frac{2}{3}\overrightarrow{AC}$ et puisque la projection conserve le coefficient de colinéarité

donc:
$$\overrightarrow{BE} = \frac{2}{3}\overrightarrow{BC}$$



Déduction

$$\text{On a } \overrightarrow{BE} = \frac{2}{3} \overrightarrow{BC} \text{ donc } \overrightarrow{BI} + \overrightarrow{IE} = \frac{2}{3} \overrightarrow{BC} \text{ c-à-dire} : \overrightarrow{IE} = \frac{2}{3} \overrightarrow{BC} - \frac{1}{2} \overrightarrow{BC} \text{ donc } : \overrightarrow{IE} = \frac{1}{6} \overrightarrow{BC} .$$

3. Soit p la projection sur (BD) parallèlement à (AB)

a) On a
$$\overrightarrow{AD} = \overrightarrow{BC}$$
 donc $ABCD$ est un parallélogramme d'où $\left(AB\right) \| \left(DC\right)$

donc
$$p(C) = D$$

On a $\ ABCD$ est un parallélogramme d'où $\ K$ est milieu de $\left[BD\right]$

on a
$$p(B) = B$$
, $p(C) = D$ et la projection conserve le milieu et I milieu de BC donc $p(I) = K$

b) On a
$$\overrightarrow{BE} = \frac{2}{3}\overrightarrow{BC}$$
 , $p(B) = B$, $p(I) = K$, $p(C) = D$, $p(E) = F(\text{car } \left(EF\right) \| \left(AB\right)$) et la

projection conserve le coefficient de colinéarité donc $:\overrightarrow{KF}=\frac{1}{6}\,\overrightarrow{BD}\,$.

Exercice 2: (Correction)

1. Résoudre dans \mathbb{R} l'équation : $2x^2 - 9x + 7 = 0$

On a $\Delta = b^2 - 4ac = 81 - 4 \times 2 \times 7 = 25$ donc l'équation a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{9 - 5}{2 \times 2} = \frac{4}{4} = 1 \quad \text{et} \quad x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{9 + 5}{2 \times 2} = \frac{14}{4} = \frac{7}{2} \quad \text{donc} \quad S = \left\{1; \frac{7}{2}\right\}$$

2. Résoudre dans \mathbb{R} les deux inéquations : $2x^2-9x+7>0$ et $2x^3-9x^2+7x\leq 0$ le tableau de signe :

donc l'ensemble de solution

de l'inéquation $2x^2 - 9x + 7 > 0$

est
$$S =]-\infty; 1[\bigcup \frac{7}{2}; +\infty]$$

x	$-\infty$	1		$\frac{7}{2}$	+∞
2x2-9x+7	+	þ	_	þ	+

On a
$$2x^3 - 9x^2 + 7x \le 0$$
 équivaut à $x(2x^2 - 9x + 7) \le 0$

le tableau de signe est : donc l'ensemble de solution de l'inéquation :

$$x\left(2x^2-9x+7\right) \le 0$$

est

$$S = \left] -\infty; 0\right] \cup \left[1; \frac{7}{2}\right]$$

x	$-\infty$	0	1	1	$\frac{7}{2}$ $+\infty$
2x2-9x+7	+		+ (- () +
x	_	þ	+	+	+
x(2x2-9x+7)	-	þ	+ (- () +

3. Résoudre dans
$$\mathbb{R}^2$$
 le système :
$$\begin{cases} 2x - 3y = -5 \\ -x + 2y = 4 \end{cases}$$

Le déterminant du système est :
$$\Delta = \begin{vmatrix} 2 & -3 \\ -1 & 2 \end{vmatrix} = 2 \times 2 - (-1)(-3) = 1$$

donc le système a une seule solution :

$$\Delta_{x} = \begin{vmatrix} -5 & -3 \\ 4 & 2 \end{vmatrix} = (-5) \times 2 - 4 \times (-3) = 2$$
 et $\Delta_{y} = \begin{vmatrix} 2 & -5 \\ -1 & 4 \end{vmatrix} = 2 \times 4 - (-5) \times (-1) = 3$

donc
$$x = \frac{2}{1} = 2$$
 et $y = \frac{3}{1} = 3$ donc $S = \{(1, 2)\}$

Déduire les solutions du système :
$$\begin{cases} \frac{2}{x-1} - 3|y+1| = -5\\ \frac{-1}{x-2} + 2|y+1| = 4 \end{cases}$$

On pose
$$X = \frac{1}{x-1}$$
 et $Y = |y+1|$ donc le système devient :
$$\begin{cases} 2X - 3Y = -5 \\ -X + 2Y = 4 \end{cases}$$

d'après la question précédente on a : X=1 et Y=2

donc
$$\frac{1}{x-1} = 1$$
 et $|y-1| = 2$ d'où $x = 2$ et $(y-1 = 2 \text{ ou } y-1 = -2)$

c-à-dire
$$x=2$$
 et ($y=3$ ou $y=-1$)

$$S = \{(2;3); (2;-1)\}$$