Correction : Exercices d'applications (Calcul vectoriel dans le plan)

PROF : ATMANI NAJIB Tronc CS

Exercice 1 : on considére les vecteurs :

$$\overrightarrow{U} = \overrightarrow{BC} - \overrightarrow{AC} - \overrightarrow{BA} + \overrightarrow{AB}$$
 et $\overrightarrow{V} = \overrightarrow{BE} + \overrightarrow{DF} + \overrightarrow{EF} + \overrightarrow{AB} + \overrightarrow{ED} + \overrightarrow{FA}$

Simplifier les vecteurs : \overrightarrow{U} et \overrightarrow{V}

Solution:
$$\overrightarrow{U} = \overrightarrow{BC} - \overrightarrow{AC} - \overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB} + \overrightarrow{AB}$$

$$\overrightarrow{U} = \overrightarrow{BA} + \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{BB} + \overrightarrow{AB} = \overrightarrow{0} + \overrightarrow{AB} = \overrightarrow{AB}$$

$$\overrightarrow{V} = \overrightarrow{BE} + \overrightarrow{DF} + \overrightarrow{EF} + \overrightarrow{AB} + \overrightarrow{ED} + \overrightarrow{FA} = \overrightarrow{BE} + \overrightarrow{EF} + \overrightarrow{FA} + \overrightarrow{AB} + \overrightarrow{ED} + \overrightarrow{DF}$$

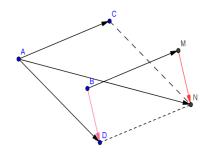
$$\overrightarrow{V} = \overrightarrow{BF} + \overrightarrow{FB} + \overrightarrow{EF} = \overrightarrow{BB} + \overrightarrow{EF} = \overrightarrow{0} + \overrightarrow{EF} = \overrightarrow{EF}$$

Exercice 2: Soient A; B; C; D des points du plan (P)

1)construire les points M et N tels que :
$$\overrightarrow{BM} = \overrightarrow{AC}$$

$$et_{\overrightarrow{AN}} = \overrightarrow{AC} + \overrightarrow{AD}$$

2)comparer les vecteurs
$$\overrightarrow{BD}$$
 et \overrightarrow{MN}



Solutions:1)

2)
$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = \overrightarrow{MB} + \overrightarrow{BA} + \overrightarrow{AC} + \overrightarrow{AD}$$

$$\overrightarrow{MN} = -\overrightarrow{BM} + \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{AC} = -\overrightarrow{BM} + \overrightarrow{BD} + \overrightarrow{AC}$$

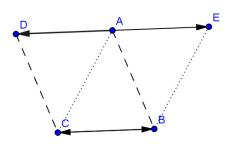
Donc:
$$\overrightarrow{MN} = -\overrightarrow{AC} + \overrightarrow{BD} + \overrightarrow{AC} = \overrightarrow{BD}$$

Exercice 3 : Soient A, B, C trois points du plan non alignés et on considère D et E du plan tel que :

$$\overrightarrow{AD} = \overrightarrow{BC}$$
 et $\overrightarrow{AE} + \overrightarrow{AD} = \overrightarrow{0}$

- 1)Faire un schéma
- 2)Quelle est la nature du quadrilatère EACB justifier votre réponse

Réponse : 1) on a :
$$\overrightarrow{AE} + \overrightarrow{AD} = \overrightarrow{0}$$
 donc $\overrightarrow{AE} = -\overrightarrow{AD}$



2) on a:
$$\overrightarrow{BC} = \overrightarrow{AD}$$
 et $\overrightarrow{AD} = -\overrightarrow{AE}$

donc
$$\overrightarrow{BC} = -\overrightarrow{AE} = \overrightarrow{EA}$$

Donc le quadrilatère EACB est un parallélogramme

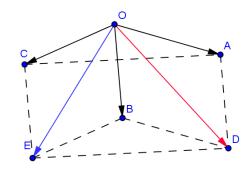
Exercice 4: Soit u et v et w des vecteurs du plan et A, B,

C, D, O, E des points du plan tel que :
$$\vec{u} = \overrightarrow{OA}$$
 et

$$\overrightarrow{v} = \overrightarrow{OB}$$
 et $\overrightarrow{w} = \overrightarrow{OC}$ et $\overrightarrow{OD} = \overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{OE} = \overrightarrow{v} + \overrightarrow{w}$

2)Montrer que ACEB est un parallélogramme et justifier votre réponse

Réponse : 1)



2) on a:
$$\overrightarrow{AD} = \overrightarrow{AO} + \overrightarrow{OD} = \overrightarrow{AO} + \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB}$$

donc
$$(1) \overrightarrow{AD} = \overrightarrow{OB}$$

Et on a:

$$|\overrightarrow{CE} = \overrightarrow{CO} + \overrightarrow{OE} = \overrightarrow{CO} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{CO} + \overrightarrow{OC} + \overrightarrow{OB} = \overrightarrow{OB}|$$
 donc

$$\widehat{CE} = \overrightarrow{OB}$$

D'après ① et ② on a :
$$\overrightarrow{AD} = \overrightarrow{CE}$$

on pose :
$$\overrightarrow{AB} = \overrightarrow{i}$$
 et $\overrightarrow{AC} = \overrightarrow{i}$

écrire les vecteurs
$$\overrightarrow{AD}$$
 et \overrightarrow{BD} en fonction de \overrightarrow{i} et \overrightarrow{j}

Réponse : ABCD est un parallélogramme donc :

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$$
 alors $\overrightarrow{AD} = \overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{i} - \overrightarrow{i}$

Donc:
$$\overrightarrow{AD} = \overrightarrow{i} - \overrightarrow{i}$$

on a:
$$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = -\overrightarrow{AB} + \overrightarrow{AD} = -\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{i}$$

Donc:
$$\overrightarrow{BD} = \overrightarrow{i} - 2\overrightarrow{i}$$

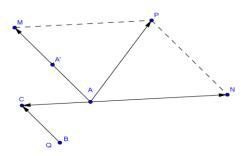
Exercice 6 : Soit A, B, C trois points du plan non alignés

On considère M, N, P et Q du plan tel que :

$$\overrightarrow{AM} = 2\overrightarrow{BC}$$
 et $\overrightarrow{AN} = -2\overrightarrow{AC}$ et $\overrightarrow{AM} + \overrightarrow{AN} = \overrightarrow{AP}$ et $\overrightarrow{AQ} = \frac{-1}{2}\overrightarrow{AP}$

1) Faire une figure 2) En déduire que :
$$2\overrightarrow{AB} = -\overrightarrow{AP}$$
 et $B = Q$

Réponse : 1)



2) on a:
$$\overrightarrow{AP} = \overrightarrow{AM} + \overrightarrow{AN} = 2\overrightarrow{BC} - 2\overrightarrow{AC} = 2\left(\overrightarrow{BC} + \overrightarrow{CA}\right) = 2\overrightarrow{BA}$$

Donc
$$2\overrightarrow{AB} = -\overrightarrow{AP}$$

Et on a :
$$\overrightarrow{AQ} = \frac{-1}{2}\overrightarrow{AP} \Leftrightarrow -\overrightarrow{AP} = 2\overrightarrow{AQ}$$

Donc
$$2\overrightarrow{AB} = 2\overrightarrow{AQ} \Leftrightarrow \overrightarrow{AB} = \overrightarrow{AQ}$$
 Donc $B = Q$

Exercice 7: soient les vecteurs \vec{u} et \vec{v}

Simplifier l'écriture des vecteurs suivants :

$$\overrightarrow{W}_1 = 2(\overrightarrow{u} + \overrightarrow{v}) - 4(\frac{1}{2}\overrightarrow{u} - \overrightarrow{v})$$
 et

$$\overrightarrow{W}_2 = \frac{1}{3} (3\vec{u} - 9\vec{v}) + \frac{1}{2} (2\vec{u} + 6\vec{v}) - 2\vec{u}$$

Réponse :
$$\overrightarrow{W}_1 = 2(\overrightarrow{u} + \overrightarrow{v}) - 4(\frac{1}{2}\overrightarrow{u} - \overrightarrow{v})$$

$$=2\vec{u}+2\vec{v}-4\times\frac{1}{2}\vec{u}+4\vec{v}$$

$$\overrightarrow{W}_1 = 2\overrightarrow{u} + 2\overrightarrow{v} - 2\overrightarrow{u} + 4\overrightarrow{v} = 6\overrightarrow{u} + \overrightarrow{0} = 6\overrightarrow{u}$$

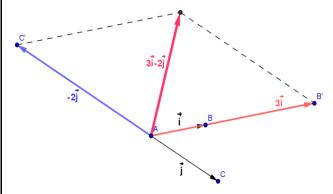
$$\overrightarrow{W}_2 = \frac{1}{3} (3\vec{u} - 9\vec{v}) + \frac{1}{2} (2\vec{u} + 6\vec{v}) - 2\vec{u}$$

$$\vec{W}_2 = \vec{u} - 3\vec{v} + \vec{u} + 3\vec{v} - 2\vec{u} = 2\vec{u} + \vec{0} - 2\vec{u} = \vec{0} + \vec{0} = \vec{0}$$

Exercice 8: Soit ABC est un triangle

on pose : $\overrightarrow{AB} = \overrightarrow{i}$ et $\overrightarrow{AC} = \overrightarrow{j}$ construire le vecteur $3\overrightarrow{i} - 2\overrightarrow{j}$

Réponse :



Exercice 9 : soit ABC est un triangle. Les points E et F sont tels que :

$$\overrightarrow{AF} = \frac{4}{3}\overrightarrow{AC}$$
 et $\overrightarrow{CE} = \frac{1}{4}\overrightarrow{AB}$

1)Faire une figure

2)montrer que : Les points E , F et B sont alignés

Réponse: 1)

2) On a:
$$\overrightarrow{CE} = \frac{1}{A}\overrightarrow{AB}$$
 donc $\overrightarrow{AB} = \overrightarrow{4CE}$

donc
$$\overrightarrow{BA} = \overrightarrow{4EC}$$

$$|\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF} = 4\overrightarrow{EC} + \frac{4}{3}\overrightarrow{AC} = 4\left(\overrightarrow{EC} + \frac{1}{3}\overrightarrow{AC}\right)$$

Or on a:
$$\overrightarrow{CF} = \frac{1}{3}\overrightarrow{AC}$$
 car: $\overrightarrow{AF} = \frac{4}{3}\overrightarrow{AC}$ donc

$$|\overrightarrow{AC} + \overrightarrow{CF}| = \frac{4}{3} |\overrightarrow{AC}|$$
 c a d $|\overrightarrow{CF}| = \frac{4}{3} |\overrightarrow{AC}| - |\overrightarrow{AC}| = \frac{1}{3} |\overrightarrow{AC}|$

Alors:
$$\overrightarrow{BF} = 4\left(\overrightarrow{EC} + \overrightarrow{CF}\right)$$
 donc $\overrightarrow{BF} = 4\overrightarrow{EF}$

Donc \overrightarrow{BF} et \overrightarrow{EF} sont colinéaires

D'où Les points E, F et B sont alignés

Exercice 10: soit ABC est un triangle. Les points E et F

sont tels que :
$$\overrightarrow{AE} = \frac{3}{4}\overrightarrow{AB}$$
 et $\overrightarrow{AF} = \frac{4}{3}\overrightarrow{AC}$

1)Faire une figure

2)écrire les vecteurs \overrightarrow{EC} et \overrightarrow{BF} en fonction de :

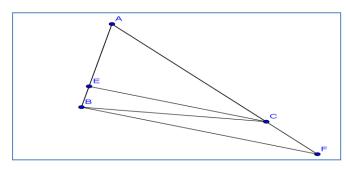
$$\overrightarrow{AB}$$
 et \overrightarrow{AC}

3) montrer que deux droites (EC) et (BF) sont parallèles

Réponse : 1)

2) on a:
$$\overrightarrow{EC} = \overrightarrow{EA} + \overrightarrow{AC}$$
 donc $\overrightarrow{EC} = -\overrightarrow{AE} + \overrightarrow{AC}$

Donc
$$\overrightarrow{EC} = -\frac{3}{4}\overrightarrow{AB} + \overrightarrow{AC}$$



D'où
$$\overrightarrow{EC} = -\frac{3}{4}\overrightarrow{AB} + \overrightarrow{AC}$$

et on a :
$$\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF}$$
 donc $\overrightarrow{BF} = -\overrightarrow{AB} + \frac{4}{3}\overrightarrow{AC}$

3) on a:
$$\overrightarrow{EC} = -\frac{3}{4}\overrightarrow{AB} + \overrightarrow{AC}$$
 donc

$$|\overrightarrow{EC}| = \frac{3}{4} \left(-\overrightarrow{AB} + \frac{4}{3} \overrightarrow{AC} \right)$$
 Donc $|\overrightarrow{EC}| = \frac{3}{4} \overrightarrow{BF}$

Exercice 11 soit ABC est un triangle. Les points E et F sont tels que :

$$|\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}|$$
 et $\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{BC}$

1)Faire une figure

2)montrer que : C est le milieu du segment [EF]



Réponse 2) On a : $\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{BC}$

donc $\overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BA} + \overrightarrow{BC}$ donc ① $\overrightarrow{CE} = \overrightarrow{BA}$

Et on a : $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$

Donc $\overrightarrow{AC} + \overrightarrow{CF} = \overrightarrow{AB} + \overrightarrow{AC}$ donc ② $\overrightarrow{CF} = \overrightarrow{AB}$

 $\overrightarrow{CE} + \overrightarrow{CF} = \overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{AA} = \overrightarrow{0}$

Donc : C est le milieu du segment [EF]

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

