TP de Chimie nº 6 Suivi d'une réaction par spectrophotométrie

1 Manipulation préliminaire

- Dans un bécher de 50 mL, introduire 5,0 mL d'eau oxygénée de concentration molaire 5.0×10^{-2} mol·L⁻¹ et 20,0 mL d'acide sulfurique de concentration $1.0 \text{ mol} \cdot \text{L}^{-1}$.
- Verser dans la solution précédente 5,0 mL de solution d'iodure de potassium de concentration molaire 0,50 mol·L⁻¹. Homogénéiser et noter vos observations sur votre compte-rendu.

2 Proposition d'un protocole

Voici le matériel à votre disposition :

Solutions

- □ Solution d'acide sulfurique à 1 $\mathrm{mol} \cdot \mathrm{L}^{-1}$, 1 volume pour 4 volumes d'eau oxygénée, mélangée à l'eau oxygénée à $\mathrm{H_2O_2}$ à $5.0 \times 10^{-2} \; \mathrm{mol} \cdot \mathrm{L}^{-1}$ ou $0.5 \; \mathrm{volumes}$, $100 \; \mathrm{mL}$;
- □ Solution iodure potassium $K^+ + I^-$ à $1.0 \times 10^{-3} \text{ mol} \cdot L^{-1}$, 100 mL;
- □ 1 pissette d'eau distillée.

Au bureau

- □ 2 burettes graduées de 25 mL;
- □ 2 béchers poubelles;
- □ 2 béchers.

Pour chaque groupe

- \square Un colorimètre et son alimentation ± 15 V;
- □ Portoir à cuves;
- □ 3 cuves de spectrophotométrie.

- Afin de faire un suivi cinétique de la réaction présentée ci-dessus, proposer un protocole expérimental détaillé permettant d'effectuer une série de mesure d'une grandeur physique qui varie au cours de la réaction. On s'attachera notamment à préciser la grandeur physique choisie et la verrerie utilisée.
- Remarque : ce suivi cinétique doit durer 10 minutes et s'effectuer toutes les cinq secondes.

Appel n° 1 : Appeler le professeur pour lui présenter le protocole expérimental proposé ou en cas de difficulté

3 Mise en œuvre du protocole

- Mettre en œuvre le protocole expérimental.
- Tracer sur papier millimétré la courbe de l'évolution de l'avancement de la réaction étudiée au cours du temps x = f(t).

Appel facultatif : Appeler le professeur en cas de difficulté lors de la mise en œuvre du protocole expérimental ou lors du tracé de la courbe.

4 Analyse de la courbe x = f(t)

• Analyser la courbe x = f(t) tracée ci-dessus pour effectuer une étude cinétique de la transformation étudiée.

Appel n° 2 : Appeler le professeur pour lui présenter le résultat de l'étude cinétique ou en cas de difficulté.

• Défaire le montage et ranger la paillasse.

Grille TPC 6

- \Box Courbe A = kc
- $\square \ \lambda_{\rm max} = 470 \ {\rm nm} + {\rm couleur}$ complémentaire du bleu
- ☐ Droite d'étalonnage : pente + coeff. de corrélation
- \Box Courbe A = f(t)
- \Box Modélisation : $A_{\rm max}=2,0$ et $\tau=170$ s
- \square Asymptote horizontale A_{\max} et tangente à l'origine

Note .../6