Année : 2019/2020

Lycée Othman Ben Affane Direction provinciale :Berrchid Contrôle 3 : 2 Bac PC 1h55min

Semestre: 1

Physique - Chimie

Prof : Y. EL FATIMY

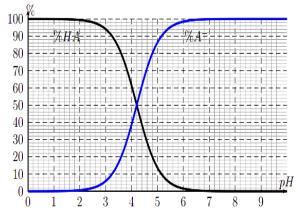
« Tout résultat donné sans unité sera compté faux »

Partie 1 : Réaction d'une base avec l'eau :

On considère deux solutions basiques (S_1) et (S_2) de même concentration $C = 1,0.10^{-2}$ mol.L⁻¹ à 25 °C.

- (S_1) : solution d'ammoniac $NH_{3(aq)}$ de $pk_{A1} = 9,2$
- (S_2) : solution de méthyle-amine $\mathbf{CH_3NH_{2(aq)}}$ de $pk_{A2} = 10,7$ et $pH_1 = 11,4$

Données : 25 °C : $Ke = [H_3O^+] \cdot [HO^-] = 10^{-14}$; (NH_4^+/NH_3) ; (NH_4^+/NH_3) ;


- 1- Ecrire l'équation de réaction entre méthyle amine CH₃NH₂ et l'eau
- 2- Déterminer le taux d'avancement final en fonction de \mathbb{C} , ph et K_e . Calculer sa valeur. Que peut-on conclure ?
- 3- A votre avis quelle est la base la plus soluble dans l'eau NH3 ou CH3NH2? justifier
- **4-** Exprimer le quotient de la réaction $\mathbf{Q_{r,eq}}$ à l'équilibre en fonction de $\mathbf{K_e}$ et $\mathbf{K_{A2}}$. Puis calculer sa valeur.
- 5- Quelle est l'espèce prédominante CH_3NH_2 ou $CH_3NH_3^+$ dans la solution (S_1) ,
- **6-** Calculer le pourcentage de l'espèce prédominante.
- **7-** Déterminer la valeur de **ph** lorsque $[NH_3^+] = 15[NH_3]$

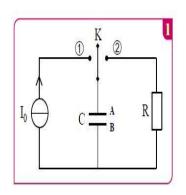
Partie 2 : Diagramme de réparation

Le document ci-dessous représente le diagramme de distribution d'un mélange d'acide benzoïque , C_6H_5COOH (aq) , noté HA et d'ion benzoate , $C_6H_5COO^-_{(aq)}$ noté A-- à $25^{\circ}C.$ il indique les pourcentages d'acide benzoïque et d'ion benzoate en solution , en fonction du pH. La concentration molaire totale apportée en acide et base conjugué $\,C_T=\,10$ mmol/L .

À partir du diagramme :

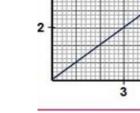
- 1. Déterminer la valeur du pKa du couple.
- 2. Déterminer la concentration molaire en acide dans une solution de pH = 5,0

****<u>*</u>*********physique (13 points) *********

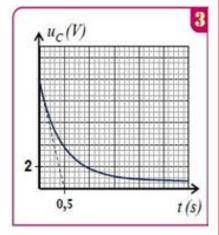

Physique 1 (7 pts) Dipôle RC

Les condensateurs sont caractérisés par le fait d'emmagasiner de l'énergie électrique pour l'utiliser au cas de besoin. Cette propriété permet d'utiliser les condensateurs dans beaucoup d'appareil.

On réalise le montage de la figure1 formé de :


*un générateur idéal du courant qui alimente le circuit par un courant d'intensité $I_0=1mA$.

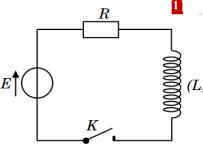
- *un condensateur de capacité C initialement déchargé.
- *un conducteur ohmique de résistance R.
- *un interrupteur K a deux positions 1 et 2.


Partie 1- A t=0 on bascule l'interrupteur à la position 1 et on suit les variations de la tension u_C en fonction du temps et on obtient la courbe de **la figure 2**.

- 1. Déterminer l'armature négative.
- **2.** Montrer que l'expression de la tension aux bornes du condensateur s'écrit : $u_C = \frac{I_0}{C}$. t.
- **3.** Vérifie que $C = 1,5.10^{-3} F$

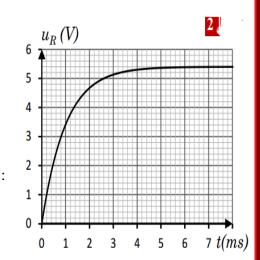
Partie 2 Lorsque la tension aux bornes du condensateur est égale à E. On bascule l'interrupteur à la position 2 et on obtient la courbe de **la figure 3**. On considère que $u_C(t=0) = E = 10V$

- 1. Déterminer l'équation différentielle vérifié par $u_{\mathcal{C}}$.
- 2. Vérifier que $u_c = E \cdot e^{-\frac{t}{\tau}}$ est solution de l'équation différentielle
- 3. Par l'analyse dimensionnelle montrer que τ a une dimension du temps.
- 4. Déterminer la valeur de τ et déduire la valeur de la résistance R
- 5. Montrer que l'expression de l'intensité du courant est : i = -0, 03. e^{-2t}
- 6. Déterminer à l'instant t' où 70% de l'énergie maximale stockée dans le condensateur est dissipée par effet joule



t(s)

Physique 2 (6 pts) : Dipôle RL


On réalise le circuit électrique, schématisé sur la figure 1, qui comporte :

- Un générateur de tension de f.e.m. E = 5.5 V;
- Une bobine d'inductance \boldsymbol{L} et de résistance négligeable ;
- Un conducteur ohmique de résistance $R=\,$ **100** Ω Un interrupteur K

On ouvre à l'instant t = 0 l'interrupteur K puis on visualise la tension aux bornes de conducteur ohmique en fonction de temps $u_R = f(t)$ (voir la figure 2):

- 1) Quel est le rôle de la bobine lors de fermeture du circuit ?
- 2) Montrer que l'équation différentielle vérifiée par la tension u_R s'écrit sous la forme : $\tau \frac{du_R}{dt} + u_R = A$ en déterminant les expressions de A et τ
 - 3) La solution de l'équation différentielle est : $u_R(t) = u_{R,max} (1 e^{-\frac{t}{\tau}})$,
 - **3-1** Déterminer $u_{R,max}$ en fonction de E .
 - 4) En exploitant la figure 2 : Determiner :
 - **a-** la tension $u_{R,max}$ au régime permanent ;
 - **b-** la constante de temps τ .
 - **c** Puis vérifier que L = 0, 1 H
- 5) Trouver l'expression de la tension u_L aux bornes de la bobine.
- 6) Montrer que l''expression de l'énergie magnétique s'écrit sous forme : $E_m(t) = \frac{1}{2}\tau \cdot \frac{(u_{R,max})^2}{R} (1 e^{-\frac{t}{\tau}})^2 \text{ puis calculer sa valeur à } t = \tau$

