

CHIMIE / Unité :1 LA TRANSF. D'UN SYSTEME CHIMIQUE EST-ELLE TOUJOURS RAPIDE

Activité Suivi temporel d'une transformation chimique

Technique conductimétrie

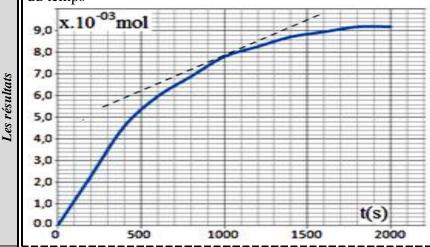
On se propose d'étudier, par conductimétrie, la cinétique de l'hydrolyse du 2-chloro-2-méthylpropane qui est noté RCl.

Le mélange réactionnel initial est réalisé en versant une quantité de matière $n_i(RCl) = 9.1 \times 10^{-3}$ mol de 2-chloro-2-méthylpropane (RCl) dans un mélange eau – acétone. Le volume total de la solution dans le bécher est V = 50.0 mL.

L'eau présente est en très large excès.

réaction qui a lieu au cours de la transformation étudiée a pour équation RC $l_{(l)}$ + 2 H₂O $_{(l)}$ \rightarrow ROH $_{(aq)}$ + H₃O $^{+}_{(aq)}$ + C $l^{-}_{(aq)}$

1- Pourquoi peut-on effectuer un suivi conductimétrique de cette transformation?


on plonge dans le bécher contenant le mélange eau - acétone une cellule conductimétrique préalablement étalonnée. On déclenche le chronomètre à l'instant où on ajoute le 2-chloro-2-méthylpropane (RCl) dans le mélange et on mesure la conductivité σ de la solution à différentes dates.

t (s)	0	200	400	600	800	1000	1200	1400	1600	1800	2000
σ(S/m)	0	0,489	0,977	1,270	1,466	1,661	1,759	1,856	1,905	1,955	1,955

- 2- Dresser le tableau descriptif de la réaction étudier.
- 3-Donner l'expression de la conductivité σ de la solution à la date t en fonction de l'avancement x de la réaction, du volume V de la solution et des conductivités molaires ioniques des ions oxonium $\lambda_{H3O}+$ et chlorure λ_{Cl} -.
- 3-Montrer que $\sigma_t = \sigma_f \cdot \frac{x}{n_i}$ avec σ_f la conductivité à la fin de la réaction . Compléter le tableau ci-dessous

i			1									
į	t (s)	0	200	400	600	800	1000	1200	1400	1600	1800	2000
ł	x(t)mmol											

Les résultats obtenus permettent de tracer la courbe d'évolution de l'avancement x de la réaction en fonction du temps

- 4- Déterminer la vitesse volumique de réaction à l'instant t=1000s.
- 5- Déterminer graphiquement le temps de demi-réaction t_{1/2}.